Loading…
Experimental discrimination between proton leak and redox slip during mitochondrial electron transport
By measuring the relationship between protonmotive force and the increment in oxygen consumption by mitochondria treated with submaximal amounts of uncoupler, we have experimentally tested four different models of imperfect coupling of oxidative phosphorylation. The results show that the increased r...
Saved in:
Published in: | Biochemical journal 1994, Vol.297 (1), p.27-29 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By measuring the relationship between protonmotive force and the increment in oxygen consumption by mitochondria treated with submaximal amounts of uncoupler, we have experimentally tested four different models of imperfect coupling of oxidative phosphorylation. The results show that the increased rate of oxygen consumption at high protonmotive force is explained entirely by the dependence on protonmotive force of the passive proton leak conductance of the mitochondrial inner membrane. There is no measurable contribution from redox-slip reactions in the proton pumps caused by high protonmotive force. Neither is there any contribution from increased proton conductance of the membrane or increased redox slip in the respiratory chain caused by high turnover rates of the complexes. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2970027 |