Loading…
Transforming growth factor β decreases the rate of proliferation of rat vascular smooth muscle cells by extending the G2 phase of the cell cycle and delays the rise in cyclic AMP before entry into M phase
Transforming growth factor beta 1 (TGF-beta 1) decreased the rate of proliferation of rat aortic vascular smooth muscle cells (VSMCs) stimulated with serum showing a maximal effect at > 5 ng/ml (200 pM). However, it did not reduce the proportion of cells which passed through S phase (> 90%) an...
Saved in:
Published in: | Biochemical journal 1994-04, Vol.299 (1), p.227-235 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transforming growth factor beta 1 (TGF-beta 1) decreased the rate of proliferation of rat aortic vascular smooth muscle cells (VSMCs) stimulated with serum showing a maximal effect at > 5 ng/ml (200 pM). However, it did not reduce the proportion of cells which passed through S phase (> 90%) and entry into S phase was delayed by less than 3 h. The proportion of cells passing through M phase (> 90%) was also unaffected, but entry into mitosis was delayed by approx. 24 h. This increase in cell cycle time was therefore due mainly to an increase in the G2 to mitotic metaphase period. Addition of TGF-beta 1 late in G1 or late in S phase failed to delay the onset of mitosis, but the presence of TGF-beta 1 between 0 and 12 h after the addition of serum to quiescent cells was sufficient to cause the maximal delay in mitosis of approx. 24 h. The role of cyclic AMP in the mechanism of the TGF-beta 1 effects on the cell cycle was examined. Entry into mitosis was preceded by a transient 2-fold increase in cyclic AMP concentration and TGF-beta 1 delayed both this increase in cyclic AMP and entry into mitosis to the same extent. Addition of forskolin or 8-(4-chlorophenylthio)-cyclic AMP to cells 30 h after stimulation with serum completely reversed the increase in duration of G2 in the presence of TGF-beta 1, suggesting that the rise in cyclic AMP levels which precedes mitosis might trigger entry of the VSMCs into M phase. Addition of forskolin late in S phase (26 h after stimulation with serum) advanced the entry of the cells into M phase and they divided prematurely. This effect was unaffected by the addition of cycloheximide with the forskolin; however, the effect of forskolin on cell division was completely inhibited when cycloheximide was added late in G1. TGF-beta 1 prevented the loss of smooth-muscle-specific myosin heavy chain (SM-MHC), which occurs in primary VSMC cultures in the presence or absence of serum, and the cells proliferated while maintaining a differentiated phenotype. However, TGF-beta 1 did not cause re-differentiation of subcultured VSMCs which contained very low amounts of SM-MHC and the effect of TGF-beta 1 in extending the G2 phase of the cell cycle is exerted independently of its effect on differentiation. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2990227 |