Loading…

Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography

The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subse...

Full description

Saved in:
Bibliographic Details
Published in:Polish journal of radiology 2024, Vol.89, p.e420-427
Main Authors: Nowak, Ewa, Białecki, Marcin, Białecka, Agnieszka, Kazimierczak, Natalia, Kloska, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3
container_end_page 427
container_issue
container_start_page e420
container_title Polish journal of radiology
container_volume 89
creator Nowak, Ewa
Białecki, Marcin
Białecka, Agnieszka
Kazimierczak, Natalia
Kloska, Anna
description The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta 2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated. The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets. The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.
doi_str_mv 10.5114/pjr/192115
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11384217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102881925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</originalsourceid><addsrcrecordid>eNpVkc1u3SAQhVHVqolus-kDVCyrSk4MGINXVRT1J1KkbrLoDs2FsS-pbVzAkfxCfc6S3tuoZcOM5nAGnY-Qt6y-lIw1V8tDvGIdZ0y-IOdMd11Vd616WWolRMVE8_2MXKT0UJfTMtE2zWtyJjouVcfVOfl1nRKm5OeB5gNS52GYQ8reUrB2jWA3GnoKMfveWw8j9XPGcfQDzhZLQ5eirnB24RGSXUeIFGZc45YmGnEBH-nTcET4QR1mtNmHma5_FroVxvIU47BRG6ZlzehoDlMYIiyHrRgN_lS_Ia96GBNenO4duf_86f7ma3X37cvtzfVdZbngubKKgWVOgnPaOe5qa_dKdXvOUPdSC9f3oLRrkQHXslZS9k2HXDHJWwAnduTj0XZZ9xM6i3OOMJol-gniZgJ48_9k9gczhEfDmNANL5HvyPuTQww_V0zZTD7ZklhJJazJCFZzrQswWaQfjlIbQ0oR--c9rDZPbE1ha45si_jdvz97lv4lKX4Dk8GnIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102881925</pqid></control><display><type>article</type><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><source>PubMed Central</source><creator>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</creator><creatorcontrib>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</creatorcontrib><description>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta 2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated. The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets. The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</description><identifier>ISSN: 1733-134X</identifier><identifier>ISSN: 1899-0967</identifier><identifier>EISSN: 1899-0967</identifier><identifier>DOI: 10.5114/pjr/192115</identifier><identifier>PMID: 39257927</identifier><language>eng</language><publisher>Poland: Termedia Publishing House</publisher><subject>Original Paper</subject><ispartof>Polish journal of radiology, 2024, Vol.89, p.e420-427</ispartof><rights>Pol J Radiol 2024.</rights><rights>Pol J Radiol 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</cites><orcidid>0000-0002-1850-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39257927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowak, Ewa</creatorcontrib><creatorcontrib>Białecki, Marcin</creatorcontrib><creatorcontrib>Białecka, Agnieszka</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><title>Polish journal of radiology</title><addtitle>Pol J Radiol</addtitle><description>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta 2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated. The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets. The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</description><subject>Original Paper</subject><issn>1733-134X</issn><issn>1899-0967</issn><issn>1899-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u3SAQhVHVqolus-kDVCyrSk4MGINXVRT1J1KkbrLoDs2FsS-pbVzAkfxCfc6S3tuoZcOM5nAGnY-Qt6y-lIw1V8tDvGIdZ0y-IOdMd11Vd616WWolRMVE8_2MXKT0UJfTMtE2zWtyJjouVcfVOfl1nRKm5OeB5gNS52GYQ8reUrB2jWA3GnoKMfveWw8j9XPGcfQDzhZLQ5eirnB24RGSXUeIFGZc45YmGnEBH-nTcET4QR1mtNmHma5_FroVxvIU47BRG6ZlzehoDlMYIiyHrRgN_lS_Ia96GBNenO4duf_86f7ma3X37cvtzfVdZbngubKKgWVOgnPaOe5qa_dKdXvOUPdSC9f3oLRrkQHXslZS9k2HXDHJWwAnduTj0XZZ9xM6i3OOMJol-gniZgJ48_9k9gczhEfDmNANL5HvyPuTQww_V0zZTD7ZklhJJazJCFZzrQswWaQfjlIbQ0oR--c9rDZPbE1ha45si_jdvz97lv4lKX4Dk8GnIg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nowak, Ewa</creator><creator>Białecki, Marcin</creator><creator>Białecka, Agnieszka</creator><creator>Kazimierczak, Natalia</creator><creator>Kloska, Anna</creator><general>Termedia Publishing House</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid></search><sort><creationdate>2024</creationdate><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><author>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Ewa</creatorcontrib><creatorcontrib>Białecki, Marcin</creatorcontrib><creatorcontrib>Białecka, Agnieszka</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polish journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Ewa</au><au>Białecki, Marcin</au><au>Białecka, Agnieszka</au><au>Kazimierczak, Natalia</au><au>Kloska, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</atitle><jtitle>Polish journal of radiology</jtitle><addtitle>Pol J Radiol</addtitle><date>2024</date><risdate>2024</risdate><volume>89</volume><spage>e420</spage><epage>427</epage><pages>e420-427</pages><issn>1733-134X</issn><issn>1899-0967</issn><eissn>1899-0967</eissn><abstract>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta 2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated. The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets. The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</abstract><cop>Poland</cop><pub>Termedia Publishing House</pub><pmid>39257927</pmid><doi>10.5114/pjr/192115</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1733-134X
ispartof Polish journal of radiology, 2024, Vol.89, p.e420-427
issn 1733-134X
1899-0967
1899-0967
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11384217
source PubMed Central
subjects Original Paper
title Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20diagnostic%20accuracy%20of%20artificial%20intelligence%20in%20post-endovascular%20aneurysm%20repair%20endoleak%20detection%20using%20dual-energy%20computed%20tomography%20angiography&rft.jtitle=Polish%20journal%20of%20radiology&rft.au=Nowak,%20Ewa&rft.date=2024&rft.volume=89&rft.spage=e420&rft.epage=427&rft.pages=e420-427&rft.issn=1733-134X&rft.eissn=1899-0967&rft_id=info:doi/10.5114/pjr/192115&rft_dat=%3Cproquest_pubme%3E3102881925%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102881925&rft_id=info:pmid/39257927&rfr_iscdi=true