Loading…
Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography
The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA). The study involved 95 patients who underwent EVAR and subse...
Saved in:
Published in: | Polish journal of radiology 2024, Vol.89, p.e420-427 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3 |
container_end_page | 427 |
container_issue | |
container_start_page | e420 |
container_title | Polish journal of radiology |
container_volume | 89 |
creator | Nowak, Ewa Białecki, Marcin Białecka, Agnieszka Kazimierczak, Natalia Kloska, Anna |
description | The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA).
The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta
2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated.
The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets.
The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses. |
doi_str_mv | 10.5114/pjr/192115 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11384217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102881925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</originalsourceid><addsrcrecordid>eNpVkc1u3SAQhVHVqolus-kDVCyrSk4MGINXVRT1J1KkbrLoDs2FsS-pbVzAkfxCfc6S3tuoZcOM5nAGnY-Qt6y-lIw1V8tDvGIdZ0y-IOdMd11Vd616WWolRMVE8_2MXKT0UJfTMtE2zWtyJjouVcfVOfl1nRKm5OeB5gNS52GYQ8reUrB2jWA3GnoKMfveWw8j9XPGcfQDzhZLQ5eirnB24RGSXUeIFGZc45YmGnEBH-nTcET4QR1mtNmHma5_FroVxvIU47BRG6ZlzehoDlMYIiyHrRgN_lS_Ia96GBNenO4duf_86f7ma3X37cvtzfVdZbngubKKgWVOgnPaOe5qa_dKdXvOUPdSC9f3oLRrkQHXslZS9k2HXDHJWwAnduTj0XZZ9xM6i3OOMJol-gniZgJ48_9k9gczhEfDmNANL5HvyPuTQww_V0zZTD7ZklhJJazJCFZzrQswWaQfjlIbQ0oR--c9rDZPbE1ha45si_jdvz97lv4lKX4Dk8GnIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102881925</pqid></control><display><type>article</type><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><source>PubMed Central</source><creator>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</creator><creatorcontrib>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</creatorcontrib><description>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA).
The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta
2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated.
The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets.
The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</description><identifier>ISSN: 1733-134X</identifier><identifier>ISSN: 1899-0967</identifier><identifier>EISSN: 1899-0967</identifier><identifier>DOI: 10.5114/pjr/192115</identifier><identifier>PMID: 39257927</identifier><language>eng</language><publisher>Poland: Termedia Publishing House</publisher><subject>Original Paper</subject><ispartof>Polish journal of radiology, 2024, Vol.89, p.e420-427</ispartof><rights>Pol J Radiol 2024.</rights><rights>Pol J Radiol 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</cites><orcidid>0000-0002-1850-3525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39257927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowak, Ewa</creatorcontrib><creatorcontrib>Białecki, Marcin</creatorcontrib><creatorcontrib>Białecka, Agnieszka</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><title>Polish journal of radiology</title><addtitle>Pol J Radiol</addtitle><description>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA).
The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta
2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated.
The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets.
The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</description><subject>Original Paper</subject><issn>1733-134X</issn><issn>1899-0967</issn><issn>1899-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u3SAQhVHVqolus-kDVCyrSk4MGINXVRT1J1KkbrLoDs2FsS-pbVzAkfxCfc6S3tuoZcOM5nAGnY-Qt6y-lIw1V8tDvGIdZ0y-IOdMd11Vd616WWolRMVE8_2MXKT0UJfTMtE2zWtyJjouVcfVOfl1nRKm5OeB5gNS52GYQ8reUrB2jWA3GnoKMfveWw8j9XPGcfQDzhZLQ5eirnB24RGSXUeIFGZc45YmGnEBH-nTcET4QR1mtNmHma5_FroVxvIU47BRG6ZlzehoDlMYIiyHrRgN_lS_Ia96GBNenO4duf_86f7ma3X37cvtzfVdZbngubKKgWVOgnPaOe5qa_dKdXvOUPdSC9f3oLRrkQHXslZS9k2HXDHJWwAnduTj0XZZ9xM6i3OOMJol-gniZgJ48_9k9gczhEfDmNANL5HvyPuTQww_V0zZTD7ZklhJJazJCFZzrQswWaQfjlIbQ0oR--c9rDZPbE1ha45si_jdvz97lv4lKX4Dk8GnIg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nowak, Ewa</creator><creator>Białecki, Marcin</creator><creator>Białecka, Agnieszka</creator><creator>Kazimierczak, Natalia</creator><creator>Kloska, Anna</creator><general>Termedia Publishing House</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid></search><sort><creationdate>2024</creationdate><title>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</title><author>Nowak, Ewa ; Białecki, Marcin ; Białecka, Agnieszka ; Kazimierczak, Natalia ; Kloska, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Ewa</creatorcontrib><creatorcontrib>Białecki, Marcin</creatorcontrib><creatorcontrib>Białecka, Agnieszka</creatorcontrib><creatorcontrib>Kazimierczak, Natalia</creatorcontrib><creatorcontrib>Kloska, Anna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polish journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Ewa</au><au>Białecki, Marcin</au><au>Białecka, Agnieszka</au><au>Kazimierczak, Natalia</au><au>Kloska, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography</atitle><jtitle>Polish journal of radiology</jtitle><addtitle>Pol J Radiol</addtitle><date>2024</date><risdate>2024</risdate><volume>89</volume><spage>e420</spage><epage>427</epage><pages>e420-427</pages><issn>1733-134X</issn><issn>1899-0967</issn><eissn>1899-0967</eissn><abstract>The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography angiography (CTA).
The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dualenergy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual monoenergetic (VMI) images. The AI tool PRAEVAorta
2 was used to assess arterial phase images for endoleaks. Two experienced readers independently evaluated the same images, and their consensus served as the reference standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC), were calculated.
The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV VMI images correctly, limiting further analysis of these datasets.
The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to achieve the reliability needed for clinical use due to the significant number of misdiagnoses.</abstract><cop>Poland</cop><pub>Termedia Publishing House</pub><pmid>39257927</pmid><doi>10.5114/pjr/192115</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1850-3525</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1733-134X |
ispartof | Polish journal of radiology, 2024, Vol.89, p.e420-427 |
issn | 1733-134X 1899-0967 1899-0967 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11384217 |
source | PubMed Central |
subjects | Original Paper |
title | Assessing the diagnostic accuracy of artificial intelligence in post-endovascular aneurysm repair endoleak detection using dual-energy computed tomography angiography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20diagnostic%20accuracy%20of%20artificial%20intelligence%20in%20post-endovascular%20aneurysm%20repair%20endoleak%20detection%20using%20dual-energy%20computed%20tomography%20angiography&rft.jtitle=Polish%20journal%20of%20radiology&rft.au=Nowak,%20Ewa&rft.date=2024&rft.volume=89&rft.spage=e420&rft.epage=427&rft.pages=e420-427&rft.issn=1733-134X&rft.eissn=1899-0967&rft_id=info:doi/10.5114/pjr/192115&rft_dat=%3Cproquest_pubme%3E3102881925%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c232t-c71ac1d5add8dd2d0ccb779b21e8f583dffa78d6e1a2850755f49e271526aad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102881925&rft_id=info:pmid/39257927&rfr_iscdi=true |