Loading…
Should AI models be explainable to clinicians?
In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comp...
Saved in:
Published in: | Critical care (London, England) England), 2024-09, Vol.28 (1), p.301, Article 301 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-b81edf6710db0f30fd11bd5ae4f3ddd21f510482766e6279c99ce464cbf2a3743 |
container_end_page | |
container_issue | 1 |
container_start_page | 301 |
container_title | Critical care (London, England) |
container_volume | 28 |
creator | Abgrall, Gwénolé Holder, Andre L Chelly Dagdia, Zaineb Zeitouni, Karine Monnet, Xavier |
description | In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. "Explainable AI" (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defining explainability and standardising assessments are ongoing challenges and balancing performance and explainability can be needed, even if XAI is a growing field. |
doi_str_mv | 10.1186/s13054-024-05005-y |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11391805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808560306</galeid><sourcerecordid>A808560306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-b81edf6710db0f30fd11bd5ae4f3ddd21f510482766e6279c99ce464cbf2a3743</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoNYbK3-AS9kwBt7Mes5-ZqZq7IUawsLvVDBu5DJRzeSmayT3eL-e7OdWmyREBJOnvc9h7yEvENYILbyU0YGgtdAyxYAot6_ICfIpawldD9eljuTvG4FE8fkdc4_AbBpJXtFjllHZYMNPSGLr-u0i7ZaXldDsi7mqneV-72JOoy6j67apsrEMAYT9JjP35Ajr2N2bx_OU_L98vO3i6t6dfPl-mK5qg3juK37Fp31pQXYHjwDbxF7K7TjnllrKXqBwFvaSOkkbTrTdcZxyU3vqWYNZ6fkfPbd7PrBWePG7aSj2kxh0NNeJR3U05cxrNVtulOIrMMWRHE4mx3Wz3RXy5U61IA3gEDpHRb240O3Kf3aubxVQ8jGxahHl3ZZsTIssE42tKAfZvRWR6fC6FNpbw64WrbQCgkMZKEW_6HKsm4IJo3Oh1J_IqCzwEwp58n5x5ER1CFsNYetStjqPmy1L6L3_37So-RvuuwP_9Kiiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104039672</pqid></control><display><type>article</type><title>Should AI models be explainable to clinicians?</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Abgrall, Gwénolé ; Holder, Andre L ; Chelly Dagdia, Zaineb ; Zeitouni, Karine ; Monnet, Xavier</creator><creatorcontrib>Abgrall, Gwénolé ; Holder, Andre L ; Chelly Dagdia, Zaineb ; Zeitouni, Karine ; Monnet, Xavier</creatorcontrib><description>In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. "Explainable AI" (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defining explainability and standardising assessments are ongoing challenges and balancing performance and explainability can be needed, even if XAI is a growing field.</description><identifier>ISSN: 1364-8535</identifier><identifier>ISSN: 1466-609X</identifier><identifier>EISSN: 1466-609X</identifier><identifier>EISSN: 1364-8535</identifier><identifier>DOI: 10.1186/s13054-024-05005-y</identifier><identifier>PMID: 39267172</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Artificial intelligence ; Artificial Intelligence - standards ; Artificial Intelligence - trends ; Clinical Decision-Making - methods ; Computer Science ; Critical Care - methods ; Critical Care - standards ; Debate ; Decision-making ; Humans ; Life Sciences ; Physicians - standards ; Statistics</subject><ispartof>Critical care (London, England), 2024-09, Vol.28 (1), p.301, Article 301</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-b81edf6710db0f30fd11bd5ae4f3ddd21f510482766e6279c99ce464cbf2a3743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391805/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391805/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39267172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04701022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abgrall, Gwénolé</creatorcontrib><creatorcontrib>Holder, Andre L</creatorcontrib><creatorcontrib>Chelly Dagdia, Zaineb</creatorcontrib><creatorcontrib>Zeitouni, Karine</creatorcontrib><creatorcontrib>Monnet, Xavier</creatorcontrib><title>Should AI models be explainable to clinicians?</title><title>Critical care (London, England)</title><addtitle>Crit Care</addtitle><description>In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. "Explainable AI" (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defining explainability and standardising assessments are ongoing challenges and balancing performance and explainability can be needed, even if XAI is a growing field.</description><subject>Artificial intelligence</subject><subject>Artificial Intelligence - standards</subject><subject>Artificial Intelligence - trends</subject><subject>Clinical Decision-Making - methods</subject><subject>Computer Science</subject><subject>Critical Care - methods</subject><subject>Critical Care - standards</subject><subject>Debate</subject><subject>Decision-making</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Physicians - standards</subject><subject>Statistics</subject><issn>1364-8535</issn><issn>1466-609X</issn><issn>1466-609X</issn><issn>1364-8535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkV1rFDEUhoNYbK3-AS9kwBt7Mes5-ZqZq7IUawsLvVDBu5DJRzeSmayT3eL-e7OdWmyREBJOnvc9h7yEvENYILbyU0YGgtdAyxYAot6_ICfIpawldD9eljuTvG4FE8fkdc4_AbBpJXtFjllHZYMNPSGLr-u0i7ZaXldDsi7mqneV-72JOoy6j67apsrEMAYT9JjP35Ajr2N2bx_OU_L98vO3i6t6dfPl-mK5qg3juK37Fp31pQXYHjwDbxF7K7TjnllrKXqBwFvaSOkkbTrTdcZxyU3vqWYNZ6fkfPbd7PrBWePG7aSj2kxh0NNeJR3U05cxrNVtulOIrMMWRHE4mx3Wz3RXy5U61IA3gEDpHRb240O3Kf3aubxVQ8jGxahHl3ZZsTIssE42tKAfZvRWR6fC6FNpbw64WrbQCgkMZKEW_6HKsm4IJo3Oh1J_IqCzwEwp58n5x5ER1CFsNYetStjqPmy1L6L3_37So-RvuuwP_9Kiiw</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Abgrall, Gwénolé</creator><creator>Holder, Andre L</creator><creator>Chelly Dagdia, Zaineb</creator><creator>Zeitouni, Karine</creator><creator>Monnet, Xavier</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20240912</creationdate><title>Should AI models be explainable to clinicians?</title><author>Abgrall, Gwénolé ; Holder, Andre L ; Chelly Dagdia, Zaineb ; Zeitouni, Karine ; Monnet, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-b81edf6710db0f30fd11bd5ae4f3ddd21f510482766e6279c99ce464cbf2a3743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial Intelligence - standards</topic><topic>Artificial Intelligence - trends</topic><topic>Clinical Decision-Making - methods</topic><topic>Computer Science</topic><topic>Critical Care - methods</topic><topic>Critical Care - standards</topic><topic>Debate</topic><topic>Decision-making</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Physicians - standards</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abgrall, Gwénolé</creatorcontrib><creatorcontrib>Holder, Andre L</creatorcontrib><creatorcontrib>Chelly Dagdia, Zaineb</creatorcontrib><creatorcontrib>Zeitouni, Karine</creatorcontrib><creatorcontrib>Monnet, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Critical care (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abgrall, Gwénolé</au><au>Holder, Andre L</au><au>Chelly Dagdia, Zaineb</au><au>Zeitouni, Karine</au><au>Monnet, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Should AI models be explainable to clinicians?</atitle><jtitle>Critical care (London, England)</jtitle><addtitle>Crit Care</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>28</volume><issue>1</issue><spage>301</spage><pages>301-</pages><artnum>301</artnum><issn>1364-8535</issn><issn>1466-609X</issn><eissn>1466-609X</eissn><eissn>1364-8535</eissn><abstract>In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, comprehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the potential to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. "Explainable AI" (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defining explainability and standardising assessments are ongoing challenges and balancing performance and explainability can be needed, even if XAI is a growing field.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39267172</pmid><doi>10.1186/s13054-024-05005-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8535 |
ispartof | Critical care (London, England), 2024-09, Vol.28 (1), p.301, Article 301 |
issn | 1364-8535 1466-609X 1466-609X 1364-8535 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11391805 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Artificial intelligence Artificial Intelligence - standards Artificial Intelligence - trends Clinical Decision-Making - methods Computer Science Critical Care - methods Critical Care - standards Debate Decision-making Humans Life Sciences Physicians - standards Statistics |
title | Should AI models be explainable to clinicians? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Should%20AI%20models%20be%20explainable%20to%20clinicians?&rft.jtitle=Critical%20care%20(London,%20England)&rft.au=Abgrall,%20Gw%C3%A9nol%C3%A9&rft.date=2024-09-12&rft.volume=28&rft.issue=1&rft.spage=301&rft.pages=301-&rft.artnum=301&rft.issn=1364-8535&rft.eissn=1466-609X&rft_id=info:doi/10.1186/s13054-024-05005-y&rft_dat=%3Cgale_pubme%3EA808560306%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-b81edf6710db0f30fd11bd5ae4f3ddd21f510482766e6279c99ce464cbf2a3743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104039672&rft_id=info:pmid/39267172&rft_galeid=A808560306&rfr_iscdi=true |