Loading…
DNA damage response and Ku80 function in the vertebrate embryo
Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identi...
Saved in:
Published in: | Nucleic acids research 2005-01, Vol.33 (9), p.3002-3010 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453 |
---|---|
cites | |
container_end_page | 3010 |
container_issue | 9 |
container_start_page | 3002 |
container_title | Nucleic acids research |
container_volume | 33 |
creator | Bladen, Catherine L. Lam, Wai K. Dynan, William S. Kozlowski, David J. |
description | Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis. |
doi_str_mv | 10.1093/nar/gki613 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1140083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858035841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</originalsourceid><addsrcrecordid>eNpdkU1v1DAURS0EokNhww9AFgsWSKHvxY7jbCq100JRKxACpIqN5dgv07QTe7CTqv33BM2ofKze4h5d3afD2EuEdwiNOAg2HaxueoXiEVugUGUhG1U-ZgsQUBUIUu-xZzlfA6DESj5le1g1KFVdLtjhyacj7u1gV8QT5U0MmbgNnp9PGng3BTf2MfA-8PGK-C2lkdpkR-I0tOk-PmdPOrvO9GJ399n396fflmfFxecPH5dHF4WTEsfCQ-ddUypqddOgb61TtiKqEFpdW9f5xqO0UPuOPDmrXdVULeoOS6wFyErss8Nt72ZqB_KOwpjs2mxSP9h0b6Ltzb9J6K_MKt4aRAmgxVzwZleQ4s-J8miGPjtar22gOGWjaq2klvUMvv4PvI5TCvNzpgRQUCLqGXq7hVyKOSfqHpYgmN9OzOzEbJ3M8Ku_t_9BdxJmoNgCfR7p7iG36WaeJerKnF3-MCdfjr_qy3NpluIXRTyYBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200602118</pqid></control><display><type>article</type><title>DNA damage response and Ku80 function in the vertebrate embryo</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</creator><creatorcontrib>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</creatorcontrib><description>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gki613</identifier><identifier>PMID: 15914672</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; Antigens, Nuclear - chemistry ; Antigens, Nuclear - genetics ; Antigens, Nuclear - physiology ; DNA Damage ; DNA Repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - radiation effects ; Ku Autoantigen ; Molecular Sequence Data ; Protein Structure, Tertiary ; Radiation Tolerance ; Radiation, Ionizing ; RNA, Messenger - metabolism ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - metabolism ; Zebrafish Proteins - chemistry ; Zebrafish Proteins - genetics ; Zebrafish Proteins - physiology</subject><ispartof>Nucleic acids research, 2005-01, Vol.33 (9), p.3002-3010</ispartof><rights>Copyright Oxford University Press(England) 2005</rights><rights>The Author 2005. Published by Oxford University Press. All rights reserved 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140083/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140083/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15914672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bladen, Catherine L.</creatorcontrib><creatorcontrib>Lam, Wai K.</creatorcontrib><creatorcontrib>Dynan, William S.</creatorcontrib><creatorcontrib>Kozlowski, David J.</creatorcontrib><title>DNA damage response and Ku80 function in the vertebrate embryo</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antigens, Nuclear - chemistry</subject><subject>Antigens, Nuclear - genetics</subject><subject>Antigens, Nuclear - physiology</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - radiation effects</subject><subject>Ku Autoantigen</subject><subject>Molecular Sequence Data</subject><subject>Protein Structure, Tertiary</subject><subject>Radiation Tolerance</subject><subject>Radiation, Ionizing</subject><subject>RNA, Messenger - metabolism</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - chemistry</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - physiology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAURS0EokNhww9AFgsWSKHvxY7jbCq100JRKxACpIqN5dgv07QTe7CTqv33BM2ofKze4h5d3afD2EuEdwiNOAg2HaxueoXiEVugUGUhG1U-ZgsQUBUIUu-xZzlfA6DESj5le1g1KFVdLtjhyacj7u1gV8QT5U0MmbgNnp9PGng3BTf2MfA-8PGK-C2lkdpkR-I0tOk-PmdPOrvO9GJ399n396fflmfFxecPH5dHF4WTEsfCQ-ddUypqddOgb61TtiKqEFpdW9f5xqO0UPuOPDmrXdVULeoOS6wFyErss8Nt72ZqB_KOwpjs2mxSP9h0b6Ltzb9J6K_MKt4aRAmgxVzwZleQ4s-J8miGPjtar22gOGWjaq2klvUMvv4PvI5TCvNzpgRQUCLqGXq7hVyKOSfqHpYgmN9OzOzEbJ3M8Ku_t_9BdxJmoNgCfR7p7iG36WaeJerKnF3-MCdfjr_qy3NpluIXRTyYBw</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bladen, Catherine L.</creator><creator>Lam, Wai K.</creator><creator>Dynan, William S.</creator><creator>Kozlowski, David J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050101</creationdate><title>DNA damage response and Ku80 function in the vertebrate embryo</title><author>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antigens, Nuclear - chemistry</topic><topic>Antigens, Nuclear - genetics</topic><topic>Antigens, Nuclear - physiology</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - radiation effects</topic><topic>Ku Autoantigen</topic><topic>Molecular Sequence Data</topic><topic>Protein Structure, Tertiary</topic><topic>Radiation Tolerance</topic><topic>Radiation, Ionizing</topic><topic>RNA, Messenger - metabolism</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - chemistry</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bladen, Catherine L.</creatorcontrib><creatorcontrib>Lam, Wai K.</creatorcontrib><creatorcontrib>Dynan, William S.</creatorcontrib><creatorcontrib>Kozlowski, David J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bladen, Catherine L.</au><au>Lam, Wai K.</au><au>Dynan, William S.</au><au>Kozlowski, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA damage response and Ku80 function in the vertebrate embryo</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>33</volume><issue>9</issue><spage>3002</spage><epage>3010</epage><pages>3002-3010</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15914672</pmid><doi>10.1093/nar/gki613</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2005-01, Vol.33 (9), p.3002-3010 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1140083 |
source | Open Access: Oxford University Press Open Journals; PubMed Central |
subjects | Amino Acid Sequence Animals Antigens, Nuclear - chemistry Antigens, Nuclear - genetics Antigens, Nuclear - physiology DNA Damage DNA Repair DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology Embryo, Nonmammalian - metabolism Embryo, Nonmammalian - radiation effects Ku Autoantigen Molecular Sequence Data Protein Structure, Tertiary Radiation Tolerance Radiation, Ionizing RNA, Messenger - metabolism Zebrafish - embryology Zebrafish - genetics Zebrafish - metabolism Zebrafish Proteins - chemistry Zebrafish Proteins - genetics Zebrafish Proteins - physiology |
title | DNA damage response and Ku80 function in the vertebrate embryo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20damage%20response%20and%20Ku80%20function%20in%20the%20vertebrate%20embryo&rft.jtitle=Nucleic%20acids%20research&rft.au=Bladen,%20Catherine%20L.&rft.date=2005-01-01&rft.volume=33&rft.issue=9&rft.spage=3002&rft.epage=3010&rft.pages=3002-3010&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gki613&rft_dat=%3Cproquest_pubme%3E858035841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200602118&rft_id=info:pmid/15914672&rfr_iscdi=true |