Loading…

DNA damage response and Ku80 function in the vertebrate embryo

Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identi...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2005-01, Vol.33 (9), p.3002-3010
Main Authors: Bladen, Catherine L., Lam, Wai K., Dynan, William S., Kozlowski, David J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453
cites
container_end_page 3010
container_issue 9
container_start_page 3002
container_title Nucleic acids research
container_volume 33
creator Bladen, Catherine L.
Lam, Wai K.
Dynan, William S.
Kozlowski, David J.
description Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.
doi_str_mv 10.1093/nar/gki613
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1140083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858035841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</originalsourceid><addsrcrecordid>eNpdkU1v1DAURS0EokNhww9AFgsWSKHvxY7jbCq100JRKxACpIqN5dgv07QTe7CTqv33BM2ofKze4h5d3afD2EuEdwiNOAg2HaxueoXiEVugUGUhG1U-ZgsQUBUIUu-xZzlfA6DESj5le1g1KFVdLtjhyacj7u1gV8QT5U0MmbgNnp9PGng3BTf2MfA-8PGK-C2lkdpkR-I0tOk-PmdPOrvO9GJ399n396fflmfFxecPH5dHF4WTEsfCQ-ddUypqddOgb61TtiKqEFpdW9f5xqO0UPuOPDmrXdVULeoOS6wFyErss8Nt72ZqB_KOwpjs2mxSP9h0b6Ltzb9J6K_MKt4aRAmgxVzwZleQ4s-J8miGPjtar22gOGWjaq2klvUMvv4PvI5TCvNzpgRQUCLqGXq7hVyKOSfqHpYgmN9OzOzEbJ3M8Ku_t_9BdxJmoNgCfR7p7iG36WaeJerKnF3-MCdfjr_qy3NpluIXRTyYBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200602118</pqid></control><display><type>article</type><title>DNA damage response and Ku80 function in the vertebrate embryo</title><source>Open Access: Oxford University Press Open Journals</source><source>PubMed Central</source><creator>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</creator><creatorcontrib>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</creatorcontrib><description>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gki613</identifier><identifier>PMID: 15914672</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; Antigens, Nuclear - chemistry ; Antigens, Nuclear - genetics ; Antigens, Nuclear - physiology ; DNA Damage ; DNA Repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - physiology ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - radiation effects ; Ku Autoantigen ; Molecular Sequence Data ; Protein Structure, Tertiary ; Radiation Tolerance ; Radiation, Ionizing ; RNA, Messenger - metabolism ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish - metabolism ; Zebrafish Proteins - chemistry ; Zebrafish Proteins - genetics ; Zebrafish Proteins - physiology</subject><ispartof>Nucleic acids research, 2005-01, Vol.33 (9), p.3002-3010</ispartof><rights>Copyright Oxford University Press(England) 2005</rights><rights>The Author 2005. Published by Oxford University Press. All rights reserved 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140083/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140083/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15914672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bladen, Catherine L.</creatorcontrib><creatorcontrib>Lam, Wai K.</creatorcontrib><creatorcontrib>Dynan, William S.</creatorcontrib><creatorcontrib>Kozlowski, David J.</creatorcontrib><title>DNA damage response and Ku80 function in the vertebrate embryo</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antigens, Nuclear - chemistry</subject><subject>Antigens, Nuclear - genetics</subject><subject>Antigens, Nuclear - physiology</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - physiology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - radiation effects</subject><subject>Ku Autoantigen</subject><subject>Molecular Sequence Data</subject><subject>Protein Structure, Tertiary</subject><subject>Radiation Tolerance</subject><subject>Radiation, Ionizing</subject><subject>RNA, Messenger - metabolism</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - chemistry</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - physiology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAURS0EokNhww9AFgsWSKHvxY7jbCq100JRKxACpIqN5dgv07QTe7CTqv33BM2ofKze4h5d3afD2EuEdwiNOAg2HaxueoXiEVugUGUhG1U-ZgsQUBUIUu-xZzlfA6DESj5le1g1KFVdLtjhyacj7u1gV8QT5U0MmbgNnp9PGng3BTf2MfA-8PGK-C2lkdpkR-I0tOk-PmdPOrvO9GJ399n396fflmfFxecPH5dHF4WTEsfCQ-ddUypqddOgb61TtiKqEFpdW9f5xqO0UPuOPDmrXdVULeoOS6wFyErss8Nt72ZqB_KOwpjs2mxSP9h0b6Ltzb9J6K_MKt4aRAmgxVzwZleQ4s-J8miGPjtar22gOGWjaq2klvUMvv4PvI5TCvNzpgRQUCLqGXq7hVyKOSfqHpYgmN9OzOzEbJ3M8Ku_t_9BdxJmoNgCfR7p7iG36WaeJerKnF3-MCdfjr_qy3NpluIXRTyYBw</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bladen, Catherine L.</creator><creator>Lam, Wai K.</creator><creator>Dynan, William S.</creator><creator>Kozlowski, David J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050101</creationdate><title>DNA damage response and Ku80 function in the vertebrate embryo</title><author>Bladen, Catherine L. ; Lam, Wai K. ; Dynan, William S. ; Kozlowski, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antigens, Nuclear - chemistry</topic><topic>Antigens, Nuclear - genetics</topic><topic>Antigens, Nuclear - physiology</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - physiology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - radiation effects</topic><topic>Ku Autoantigen</topic><topic>Molecular Sequence Data</topic><topic>Protein Structure, Tertiary</topic><topic>Radiation Tolerance</topic><topic>Radiation, Ionizing</topic><topic>RNA, Messenger - metabolism</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - chemistry</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bladen, Catherine L.</creatorcontrib><creatorcontrib>Lam, Wai K.</creatorcontrib><creatorcontrib>Dynan, William S.</creatorcontrib><creatorcontrib>Kozlowski, David J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bladen, Catherine L.</au><au>Lam, Wai K.</au><au>Dynan, William S.</au><au>Kozlowski, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA damage response and Ku80 function in the vertebrate embryo</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>33</volume><issue>9</issue><spage>3002</spage><epage>3010</epage><pages>3002-3010</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Cellular responses to DNA damage reflect the dynamic integration of cell cycle control, cell–cell interactions and tissue-specific patterns of gene regulation that occurs in vivo but is not recapitulated in cell culture models. Here we describe use of the zebrafish embryo as a model system to identify determinants of the in vivo response to ionizing radiation-induced DNA damage. To demonstrate the utility of the model we cloned and characterized the embryonic function of the XRCC5 gene, which encodes Ku80, an essential component of the nonhomologous end joining pathway of DNA repair. After the onset of zygotic transcription, Ku80 mRNA accumulates in a tissue-specific pattern, which includes proliferative zones of the retina and central nervous system. In the absence of genotoxic stress, zebrafish embryos with reduced Ku80 function develop normally. However, low dose irradiation of these embryos during gastrulation leads to marked apoptosis throughout the developing central nervous system. Apoptosis is p53 dependent, indicating that it is a downstream consequence of unrepaired DNA damage. Results suggest that nonhomologous end joining components mediate DNA repair to promote survival of irradiated cells during embryogenesis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15914672</pmid><doi>10.1093/nar/gki613</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2005-01, Vol.33 (9), p.3002-3010
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1140083
source Open Access: Oxford University Press Open Journals; PubMed Central
subjects Amino Acid Sequence
Animals
Antigens, Nuclear - chemistry
Antigens, Nuclear - genetics
Antigens, Nuclear - physiology
DNA Damage
DNA Repair
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
Embryo, Nonmammalian - metabolism
Embryo, Nonmammalian - radiation effects
Ku Autoantigen
Molecular Sequence Data
Protein Structure, Tertiary
Radiation Tolerance
Radiation, Ionizing
RNA, Messenger - metabolism
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Zebrafish Proteins - chemistry
Zebrafish Proteins - genetics
Zebrafish Proteins - physiology
title DNA damage response and Ku80 function in the vertebrate embryo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20damage%20response%20and%20Ku80%20function%20in%20the%20vertebrate%20embryo&rft.jtitle=Nucleic%20acids%20research&rft.au=Bladen,%20Catherine%20L.&rft.date=2005-01-01&rft.volume=33&rft.issue=9&rft.spage=3002&rft.epage=3010&rft.pages=3002-3010&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gki613&rft_dat=%3Cproquest_pubme%3E858035841%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-d0fdc926eb8991dbac6a5ee510b87acfd9d14a07dfedeca8c595b18f121730453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200602118&rft_id=info:pmid/15914672&rfr_iscdi=true