Loading…
Synthesis, in vitro and in silico study of novel 1,3-diphenylurea derived Schiff bases as competitive α-glucosidase inhibitors
Diabetes mellitus has become a major global health burden because of several related consequences, including heart disease, retinopathy, cataracts, metabolic syndrome, collapsed renal function, and blindness. In the recent study, thirty Schiff base derivatives of 1,3-diphenylurea were synthesized an...
Saved in:
Published in: | RSC advances 2024-09, Vol.14 (40), p.29288-29300 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetes mellitus has become a major global health burden because of several related consequences, including heart disease, retinopathy, cataracts, metabolic syndrome, collapsed renal function, and blindness. In the recent study, thirty Schiff base derivatives of 1,3-diphenylurea were synthesized and their anti-diabetic activity was evaluated by targeting α-glucosidase. The compounds exhibited an overwhelming inhibitory potential for α-glucosidase with higher potency ranging from 2.49-37.16 μM. The most effective compound, 5h, showed competitive inhibition of α-glucosidase (
= 3.96 ± 0.0048 μM) in the kinetic analysis and strong binding interactions with key residues α-glucosidase in docking analysis, indicating its potential for better glycemic control in diabetes patients. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d4ra05767h |