Loading…

Ultraflexible endovascular probes for brain recording through micron-scale vasculature

Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. We developed an ultra-small and f...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2023-07, Vol.381 (6655), p.306-312
Main Authors: Zhang, Anqi, Mandeville, Emiri T., Xu, Lijun, Stary, Creed M., Lo, Eng H., Lieber, Charles M.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 312
container_issue 6655
container_start_page 306
container_title Science (American Association for the Advancement of Science)
container_volume 381
creator Zhang, Anqi
Mandeville, Emiri T.
Xu, Lijun
Stary, Creed M.
Lo, Eng H.
Lieber, Charles M.
description Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. We developed an ultra-small and flexible endovascular neural probe that can be implanted into sub-100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases. Minimally invasive probes delivered into the brain vasculature monitor neural activity in vivo without causing damage.
doi_str_mv 10.1126/science.adh3916
format article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11412271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_11412271</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_114122713</originalsourceid><addsrcrecordid>eNqljb1OwzAURi1ERUNhZvULpPja-SETAwLxAIXVcpybxMixo-ukgrcnQxdmpm84Oudj7AHEEUBWj8k6DBaPphtVA9UVy0A0Zd5Ioa5ZJoSq8idRl3t2m9KXEBtr1A3bq7qooSxkxj4__EKm9_jtWo8cQxfPJtnVG-IzxRYT7yPxlowLnNBG6lwY-DJSXIeRT85SDHmyZpMv4rIS3rFdb3zC-8se2PPb6-nlPZ_XdsLOYthevZ7JTYZ-dDRO_yXBjXqIZw1QgJQ1qP8XfgHRg2O0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultraflexible endovascular probes for brain recording through micron-scale vasculature</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Zhang, Anqi ; Mandeville, Emiri T. ; Xu, Lijun ; Stary, Creed M. ; Lo, Eng H. ; Lieber, Charles M.</creator><creatorcontrib>Zhang, Anqi ; Mandeville, Emiri T. ; Xu, Lijun ; Stary, Creed M. ; Lo, Eng H. ; Lieber, Charles M.</creatorcontrib><description>Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. We developed an ultra-small and flexible endovascular neural probe that can be implanted into sub-100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases. Minimally invasive probes delivered into the brain vasculature monitor neural activity in vivo without causing damage.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adh3916</identifier><identifier>PMID: 37471542</identifier><language>eng</language><ispartof>Science (American Association for the Advancement of Science), 2023-07, Vol.381 (6655), p.306-312</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Mandeville, Emiri T.</creatorcontrib><creatorcontrib>Xu, Lijun</creatorcontrib><creatorcontrib>Stary, Creed M.</creatorcontrib><creatorcontrib>Lo, Eng H.</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><title>Ultraflexible endovascular probes for brain recording through micron-scale vasculature</title><title>Science (American Association for the Advancement of Science)</title><description>Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. We developed an ultra-small and flexible endovascular neural probe that can be implanted into sub-100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases. Minimally invasive probes delivered into the brain vasculature monitor neural activity in vivo without causing damage.</description><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqljb1OwzAURi1ERUNhZvULpPja-SETAwLxAIXVcpybxMixo-ukgrcnQxdmpm84Oudj7AHEEUBWj8k6DBaPphtVA9UVy0A0Zd5Ioa5ZJoSq8idRl3t2m9KXEBtr1A3bq7qooSxkxj4__EKm9_jtWo8cQxfPJtnVG-IzxRYT7yPxlowLnNBG6lwY-DJSXIeRT85SDHmyZpMv4rIS3rFdb3zC-8se2PPb6-nlPZ_XdsLOYthevZ7JTYZ-dDRO_yXBjXqIZw1QgJQ1qP8XfgHRg2O0</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Zhang, Anqi</creator><creator>Mandeville, Emiri T.</creator><creator>Xu, Lijun</creator><creator>Stary, Creed M.</creator><creator>Lo, Eng H.</creator><creator>Lieber, Charles M.</creator><scope>5PM</scope></search><sort><creationdate>20230720</creationdate><title>Ultraflexible endovascular probes for brain recording through micron-scale vasculature</title><author>Zhang, Anqi ; Mandeville, Emiri T. ; Xu, Lijun ; Stary, Creed M. ; Lo, Eng H. ; Lieber, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_114122713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Mandeville, Emiri T.</creatorcontrib><creatorcontrib>Xu, Lijun</creatorcontrib><creatorcontrib>Stary, Creed M.</creatorcontrib><creatorcontrib>Lo, Eng H.</creatorcontrib><creatorcontrib>Lieber, Charles M.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Anqi</au><au>Mandeville, Emiri T.</au><au>Xu, Lijun</au><au>Stary, Creed M.</au><au>Lo, Eng H.</au><au>Lieber, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraflexible endovascular probes for brain recording through micron-scale vasculature</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2023-07-20</date><risdate>2023</risdate><volume>381</volume><issue>6655</issue><spage>306</spage><epage>312</epage><pages>306-312</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. We developed an ultra-small and flexible endovascular neural probe that can be implanted into sub-100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases. Minimally invasive probes delivered into the brain vasculature monitor neural activity in vivo without causing damage.</abstract><pmid>37471542</pmid><doi>10.1126/science.adh3916</doi></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2023-07, Vol.381 (6655), p.306-312
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11412271
source American Association for the Advancement of Science; Alma/SFX Local Collection
title Ultraflexible endovascular probes for brain recording through micron-scale vasculature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraflexible%20endovascular%20probes%20for%20brain%20recording%20through%20micron-scale%20vasculature&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhang,%20Anqi&rft.date=2023-07-20&rft.volume=381&rft.issue=6655&rft.spage=306&rft.epage=312&rft.pages=306-312&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adh3916&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_11412271%3C/pubmedcentral%3E%3Cgrp_id%3Ecdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_114122713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/37471542&rfr_iscdi=true