Loading…
A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity
Background The treatment and prognosis of de novo metastatic hormone-sensitive prostate cancer (mHSPC) vary. We established and validated a novel prognostic model for predicting cancer-specific survival (CSS) in patients with mHSPC using retrospective data from a contemporary cohort. Methods 1092 Ja...
Saved in:
Published in: | International journal of clinical oncology 2024-10, Vol.29 (10), p.1574-1585 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-d55d7151c168b01ea1c14f883ed582a7b48accb38902f8e974994de6c9cda64a3 |
container_end_page | 1585 |
container_issue | 10 |
container_start_page | 1574 |
container_title | International journal of clinical oncology |
container_volume | 29 |
creator | Fujiwara, Hiroshi Kubota, Masashi Hidaka, Yu Ito, Kaoru Kawahara, Takashi Kurahashi, Ryoma Hattori, Yuto Shiraishi, Yusuke Hama, Yusuke Makita, Noriyuki Tashiro, Yu Hatano, Shotaro Ikeuchi, Ryosuke Nakashima, Masakazu Utsunomiya, Noriaki Takashima, Yasushi Somiya, Shinya Nagahama, Kanji Fujimoto, Takeru Shimizu, Kosuke Imai, Kazuto Takahashi, Takehiro Sumiyoshi, Takayuki Goto, Takayuki Morita, Satoshi Kobayashi, Takashi Akamatsu, Shusuke |
description | Background
The treatment and prognosis of de novo metastatic hormone-sensitive prostate cancer (mHSPC) vary. We established and validated a novel prognostic model for predicting cancer-specific survival (CSS) in patients with mHSPC using retrospective data from a contemporary cohort.
Methods
1092 Japanese patients diagnosed with de novo mHSPC between 2014 and 2020 were registered. The patients treated with androgen deprivation therapy and first-generation anti-androgens (ADT/CAB) were assigned to the Discovery (
N
= 467) or Validation (
N
= 328) cohorts. Those treated with ADT and androgen-receptor signaling inhibitors (ARSIs) were assigned to the ARSI cohort (
N
= 81).
Results
Using the Discovery cohort, independent prognostic factors of CSS, the extent of disease score ≥ 2 or the presence of liver metastasis; lactate dehydrogenase levels > 250U/L; a primary Gleason pattern of 5, and serum albumin levels ≤ 3.7 g/dl, were identified. The prognostic model incorporating these factors showed high predictability and reproducibility in the Validation cohort. The 5-year CSS of the low-risk group was 86% and that of the high-risk group was 22%. Approximately 26.4%, 62.7%, and 10.9% of the patients in the Validation cohort defined as high-risk by the LATITUDE criteria were further grouped into high-, intermediate-, and low-risk groups by the new model with significant differences in CSS. In the ARSIs cohort, high-risk group had a significantly shorter time to castration resistance than the intermediate-risk group.
Conclusions
The novel model based on prognostic factors can predict patient outcomes with high accuracy and reproducibility. The model may be used to optimize the treatment intensity of de novo mHSPC. |
doi_str_mv | 10.1007/s10147-024-02577-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11420339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082628541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d55d7151c168b01ea1c14f883ed582a7b48accb38902f8e974994de6c9cda64a3</originalsourceid><addsrcrecordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sIl1ONH7JxQVfGSKnFpz5bXmWxdJXawvSu1vx6nW8rjwMHyyN9jZvw1zRugH4BSdZaBglAtZaIeqVQLz5oTEFy1Sin2vNZcQNt3TB43L3O-pRRUJ9mL5pj3lGney5NmOSch7nEiS4rbEHPxjsxxqA9xJAOuYCQzFpuLXbGbmOYYsM0Ysi9-j6twxZA4GxwmUiKJS_Gzv0dSEtoyYyjEh_KguHvVHI12yvj68T5trj9_urr42l5-__Lt4vyydVx2pR2kHBRIcNDpDQW0tRKj1hwHqZlVG6Gtcxuu6yajxl6JvhcDdq53g-2E5afNx4PvstvMOLg6RLKTWZKfbboz0XrzNxL8jdnGvQEQjHLeV4f3jw4p_thhLmb22eE02YBxlw2nmnVMSwGV-u4f6m3cpVD3MxyoFgIYF5XFDixXvywnHJ-mAWrWRM0hUVMTNQ-JmtX67Z97PEl-RVgJ_EDIFQpbTL97_8f2J4Z0rvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108441234</pqid></control><display><type>article</type><title>A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity</title><source>Springer Nature</source><creator>Fujiwara, Hiroshi ; Kubota, Masashi ; Hidaka, Yu ; Ito, Kaoru ; Kawahara, Takashi ; Kurahashi, Ryoma ; Hattori, Yuto ; Shiraishi, Yusuke ; Hama, Yusuke ; Makita, Noriyuki ; Tashiro, Yu ; Hatano, Shotaro ; Ikeuchi, Ryosuke ; Nakashima, Masakazu ; Utsunomiya, Noriaki ; Takashima, Yasushi ; Somiya, Shinya ; Nagahama, Kanji ; Fujimoto, Takeru ; Shimizu, Kosuke ; Imai, Kazuto ; Takahashi, Takehiro ; Sumiyoshi, Takayuki ; Goto, Takayuki ; Morita, Satoshi ; Kobayashi, Takashi ; Akamatsu, Shusuke</creator><creatorcontrib>Fujiwara, Hiroshi ; Kubota, Masashi ; Hidaka, Yu ; Ito, Kaoru ; Kawahara, Takashi ; Kurahashi, Ryoma ; Hattori, Yuto ; Shiraishi, Yusuke ; Hama, Yusuke ; Makita, Noriyuki ; Tashiro, Yu ; Hatano, Shotaro ; Ikeuchi, Ryosuke ; Nakashima, Masakazu ; Utsunomiya, Noriaki ; Takashima, Yasushi ; Somiya, Shinya ; Nagahama, Kanji ; Fujimoto, Takeru ; Shimizu, Kosuke ; Imai, Kazuto ; Takahashi, Takehiro ; Sumiyoshi, Takayuki ; Goto, Takayuki ; Morita, Satoshi ; Kobayashi, Takashi ; Akamatsu, Shusuke</creatorcontrib><description>Background
The treatment and prognosis of de novo metastatic hormone-sensitive prostate cancer (mHSPC) vary. We established and validated a novel prognostic model for predicting cancer-specific survival (CSS) in patients with mHSPC using retrospective data from a contemporary cohort.
Methods
1092 Japanese patients diagnosed with de novo mHSPC between 2014 and 2020 were registered. The patients treated with androgen deprivation therapy and first-generation anti-androgens (ADT/CAB) were assigned to the Discovery (
N
= 467) or Validation (
N
= 328) cohorts. Those treated with ADT and androgen-receptor signaling inhibitors (ARSIs) were assigned to the ARSI cohort (
N
= 81).
Results
Using the Discovery cohort, independent prognostic factors of CSS, the extent of disease score ≥ 2 or the presence of liver metastasis; lactate dehydrogenase levels > 250U/L; a primary Gleason pattern of 5, and serum albumin levels ≤ 3.7 g/dl, were identified. The prognostic model incorporating these factors showed high predictability and reproducibility in the Validation cohort. The 5-year CSS of the low-risk group was 86% and that of the high-risk group was 22%. Approximately 26.4%, 62.7%, and 10.9% of the patients in the Validation cohort defined as high-risk by the LATITUDE criteria were further grouped into high-, intermediate-, and low-risk groups by the new model with significant differences in CSS. In the ARSIs cohort, high-risk group had a significantly shorter time to castration resistance than the intermediate-risk group.
Conclusions
The novel model based on prognostic factors can predict patient outcomes with high accuracy and reproducibility. The model may be used to optimize the treatment intensity of de novo mHSPC.</description><identifier>ISSN: 1341-9625</identifier><identifier>ISSN: 1437-7772</identifier><identifier>EISSN: 1437-7772</identifier><identifier>DOI: 10.1007/s10147-024-02577-1</identifier><identifier>PMID: 39028395</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Aged ; Aged, 80 and over ; Androgen Antagonists - therapeutic use ; Androgen Receptor Antagonists - therapeutic use ; Androgens ; Cancer Research ; Castration ; Humans ; Japan ; L-Lactate dehydrogenase ; Liver diseases ; Male ; Medical prognosis ; Medicine ; Medicine & Public Health ; Metastases ; Metastasis ; Middle Aged ; Oncology ; Original ; Original Article ; Prognosis ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - pathology ; Reproducibility ; Retrospective Studies ; Risk groups ; Surgical Oncology</subject><ispartof>International journal of clinical oncology, 2024-10, Vol.29 (10), p.1574-1585</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-d55d7151c168b01ea1c14f883ed582a7b48accb38902f8e974994de6c9cda64a3</cites><orcidid>0000-0002-1394-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39028395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiwara, Hiroshi</creatorcontrib><creatorcontrib>Kubota, Masashi</creatorcontrib><creatorcontrib>Hidaka, Yu</creatorcontrib><creatorcontrib>Ito, Kaoru</creatorcontrib><creatorcontrib>Kawahara, Takashi</creatorcontrib><creatorcontrib>Kurahashi, Ryoma</creatorcontrib><creatorcontrib>Hattori, Yuto</creatorcontrib><creatorcontrib>Shiraishi, Yusuke</creatorcontrib><creatorcontrib>Hama, Yusuke</creatorcontrib><creatorcontrib>Makita, Noriyuki</creatorcontrib><creatorcontrib>Tashiro, Yu</creatorcontrib><creatorcontrib>Hatano, Shotaro</creatorcontrib><creatorcontrib>Ikeuchi, Ryosuke</creatorcontrib><creatorcontrib>Nakashima, Masakazu</creatorcontrib><creatorcontrib>Utsunomiya, Noriaki</creatorcontrib><creatorcontrib>Takashima, Yasushi</creatorcontrib><creatorcontrib>Somiya, Shinya</creatorcontrib><creatorcontrib>Nagahama, Kanji</creatorcontrib><creatorcontrib>Fujimoto, Takeru</creatorcontrib><creatorcontrib>Shimizu, Kosuke</creatorcontrib><creatorcontrib>Imai, Kazuto</creatorcontrib><creatorcontrib>Takahashi, Takehiro</creatorcontrib><creatorcontrib>Sumiyoshi, Takayuki</creatorcontrib><creatorcontrib>Goto, Takayuki</creatorcontrib><creatorcontrib>Morita, Satoshi</creatorcontrib><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Akamatsu, Shusuke</creatorcontrib><title>A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity</title><title>International journal of clinical oncology</title><addtitle>Int J Clin Oncol</addtitle><addtitle>Int J Clin Oncol</addtitle><description>Background
The treatment and prognosis of de novo metastatic hormone-sensitive prostate cancer (mHSPC) vary. We established and validated a novel prognostic model for predicting cancer-specific survival (CSS) in patients with mHSPC using retrospective data from a contemporary cohort.
Methods
1092 Japanese patients diagnosed with de novo mHSPC between 2014 and 2020 were registered. The patients treated with androgen deprivation therapy and first-generation anti-androgens (ADT/CAB) were assigned to the Discovery (
N
= 467) or Validation (
N
= 328) cohorts. Those treated with ADT and androgen-receptor signaling inhibitors (ARSIs) were assigned to the ARSI cohort (
N
= 81).
Results
Using the Discovery cohort, independent prognostic factors of CSS, the extent of disease score ≥ 2 or the presence of liver metastasis; lactate dehydrogenase levels > 250U/L; a primary Gleason pattern of 5, and serum albumin levels ≤ 3.7 g/dl, were identified. The prognostic model incorporating these factors showed high predictability and reproducibility in the Validation cohort. The 5-year CSS of the low-risk group was 86% and that of the high-risk group was 22%. Approximately 26.4%, 62.7%, and 10.9% of the patients in the Validation cohort defined as high-risk by the LATITUDE criteria were further grouped into high-, intermediate-, and low-risk groups by the new model with significant differences in CSS. In the ARSIs cohort, high-risk group had a significantly shorter time to castration resistance than the intermediate-risk group.
Conclusions
The novel model based on prognostic factors can predict patient outcomes with high accuracy and reproducibility. The model may be used to optimize the treatment intensity of de novo mHSPC.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Androgen Antagonists - therapeutic use</subject><subject>Androgen Receptor Antagonists - therapeutic use</subject><subject>Androgens</subject><subject>Cancer Research</subject><subject>Castration</subject><subject>Humans</subject><subject>Japan</subject><subject>L-Lactate dehydrogenase</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Reproducibility</subject><subject>Retrospective Studies</subject><subject>Risk groups</subject><subject>Surgical Oncology</subject><issn>1341-9625</issn><issn>1437-7772</issn><issn>1437-7772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UUtv1DAQjhAVLYU_wAFZ4sIl1ONH7JxQVfGSKnFpz5bXmWxdJXawvSu1vx6nW8rjwMHyyN9jZvw1zRugH4BSdZaBglAtZaIeqVQLz5oTEFy1Sin2vNZcQNt3TB43L3O-pRRUJ9mL5pj3lGney5NmOSch7nEiS4rbEHPxjsxxqA9xJAOuYCQzFpuLXbGbmOYYsM0Ysi9-j6twxZA4GxwmUiKJS_Gzv0dSEtoyYyjEh_KguHvVHI12yvj68T5trj9_urr42l5-__Lt4vyydVx2pR2kHBRIcNDpDQW0tRKj1hwHqZlVG6Gtcxuu6yajxl6JvhcDdq53g-2E5afNx4PvstvMOLg6RLKTWZKfbboz0XrzNxL8jdnGvQEQjHLeV4f3jw4p_thhLmb22eE02YBxlw2nmnVMSwGV-u4f6m3cpVD3MxyoFgIYF5XFDixXvywnHJ-mAWrWRM0hUVMTNQ-JmtX67Z97PEl-RVgJ_EDIFQpbTL97_8f2J4Z0rvo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Fujiwara, Hiroshi</creator><creator>Kubota, Masashi</creator><creator>Hidaka, Yu</creator><creator>Ito, Kaoru</creator><creator>Kawahara, Takashi</creator><creator>Kurahashi, Ryoma</creator><creator>Hattori, Yuto</creator><creator>Shiraishi, Yusuke</creator><creator>Hama, Yusuke</creator><creator>Makita, Noriyuki</creator><creator>Tashiro, Yu</creator><creator>Hatano, Shotaro</creator><creator>Ikeuchi, Ryosuke</creator><creator>Nakashima, Masakazu</creator><creator>Utsunomiya, Noriaki</creator><creator>Takashima, Yasushi</creator><creator>Somiya, Shinya</creator><creator>Nagahama, Kanji</creator><creator>Fujimoto, Takeru</creator><creator>Shimizu, Kosuke</creator><creator>Imai, Kazuto</creator><creator>Takahashi, Takehiro</creator><creator>Sumiyoshi, Takayuki</creator><creator>Goto, Takayuki</creator><creator>Morita, Satoshi</creator><creator>Kobayashi, Takashi</creator><creator>Akamatsu, Shusuke</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1394-7506</orcidid></search><sort><creationdate>20241001</creationdate><title>A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity</title><author>Fujiwara, Hiroshi ; Kubota, Masashi ; Hidaka, Yu ; Ito, Kaoru ; Kawahara, Takashi ; Kurahashi, Ryoma ; Hattori, Yuto ; Shiraishi, Yusuke ; Hama, Yusuke ; Makita, Noriyuki ; Tashiro, Yu ; Hatano, Shotaro ; Ikeuchi, Ryosuke ; Nakashima, Masakazu ; Utsunomiya, Noriaki ; Takashima, Yasushi ; Somiya, Shinya ; Nagahama, Kanji ; Fujimoto, Takeru ; Shimizu, Kosuke ; Imai, Kazuto ; Takahashi, Takehiro ; Sumiyoshi, Takayuki ; Goto, Takayuki ; Morita, Satoshi ; Kobayashi, Takashi ; Akamatsu, Shusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d55d7151c168b01ea1c14f883ed582a7b48accb38902f8e974994de6c9cda64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Androgen Antagonists - therapeutic use</topic><topic>Androgen Receptor Antagonists - therapeutic use</topic><topic>Androgens</topic><topic>Cancer Research</topic><topic>Castration</topic><topic>Humans</topic><topic>Japan</topic><topic>L-Lactate dehydrogenase</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Reproducibility</topic><topic>Retrospective Studies</topic><topic>Risk groups</topic><topic>Surgical Oncology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Hiroshi</creatorcontrib><creatorcontrib>Kubota, Masashi</creatorcontrib><creatorcontrib>Hidaka, Yu</creatorcontrib><creatorcontrib>Ito, Kaoru</creatorcontrib><creatorcontrib>Kawahara, Takashi</creatorcontrib><creatorcontrib>Kurahashi, Ryoma</creatorcontrib><creatorcontrib>Hattori, Yuto</creatorcontrib><creatorcontrib>Shiraishi, Yusuke</creatorcontrib><creatorcontrib>Hama, Yusuke</creatorcontrib><creatorcontrib>Makita, Noriyuki</creatorcontrib><creatorcontrib>Tashiro, Yu</creatorcontrib><creatorcontrib>Hatano, Shotaro</creatorcontrib><creatorcontrib>Ikeuchi, Ryosuke</creatorcontrib><creatorcontrib>Nakashima, Masakazu</creatorcontrib><creatorcontrib>Utsunomiya, Noriaki</creatorcontrib><creatorcontrib>Takashima, Yasushi</creatorcontrib><creatorcontrib>Somiya, Shinya</creatorcontrib><creatorcontrib>Nagahama, Kanji</creatorcontrib><creatorcontrib>Fujimoto, Takeru</creatorcontrib><creatorcontrib>Shimizu, Kosuke</creatorcontrib><creatorcontrib>Imai, Kazuto</creatorcontrib><creatorcontrib>Takahashi, Takehiro</creatorcontrib><creatorcontrib>Sumiyoshi, Takayuki</creatorcontrib><creatorcontrib>Goto, Takayuki</creatorcontrib><creatorcontrib>Morita, Satoshi</creatorcontrib><creatorcontrib>Kobayashi, Takashi</creatorcontrib><creatorcontrib>Akamatsu, Shusuke</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Hiroshi</au><au>Kubota, Masashi</au><au>Hidaka, Yu</au><au>Ito, Kaoru</au><au>Kawahara, Takashi</au><au>Kurahashi, Ryoma</au><au>Hattori, Yuto</au><au>Shiraishi, Yusuke</au><au>Hama, Yusuke</au><au>Makita, Noriyuki</au><au>Tashiro, Yu</au><au>Hatano, Shotaro</au><au>Ikeuchi, Ryosuke</au><au>Nakashima, Masakazu</au><au>Utsunomiya, Noriaki</au><au>Takashima, Yasushi</au><au>Somiya, Shinya</au><au>Nagahama, Kanji</au><au>Fujimoto, Takeru</au><au>Shimizu, Kosuke</au><au>Imai, Kazuto</au><au>Takahashi, Takehiro</au><au>Sumiyoshi, Takayuki</au><au>Goto, Takayuki</au><au>Morita, Satoshi</au><au>Kobayashi, Takashi</au><au>Akamatsu, Shusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity</atitle><jtitle>International journal of clinical oncology</jtitle><stitle>Int J Clin Oncol</stitle><addtitle>Int J Clin Oncol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>29</volume><issue>10</issue><spage>1574</spage><epage>1585</epage><pages>1574-1585</pages><issn>1341-9625</issn><issn>1437-7772</issn><eissn>1437-7772</eissn><abstract>Background
The treatment and prognosis of de novo metastatic hormone-sensitive prostate cancer (mHSPC) vary. We established and validated a novel prognostic model for predicting cancer-specific survival (CSS) in patients with mHSPC using retrospective data from a contemporary cohort.
Methods
1092 Japanese patients diagnosed with de novo mHSPC between 2014 and 2020 were registered. The patients treated with androgen deprivation therapy and first-generation anti-androgens (ADT/CAB) were assigned to the Discovery (
N
= 467) or Validation (
N
= 328) cohorts. Those treated with ADT and androgen-receptor signaling inhibitors (ARSIs) were assigned to the ARSI cohort (
N
= 81).
Results
Using the Discovery cohort, independent prognostic factors of CSS, the extent of disease score ≥ 2 or the presence of liver metastasis; lactate dehydrogenase levels > 250U/L; a primary Gleason pattern of 5, and serum albumin levels ≤ 3.7 g/dl, were identified. The prognostic model incorporating these factors showed high predictability and reproducibility in the Validation cohort. The 5-year CSS of the low-risk group was 86% and that of the high-risk group was 22%. Approximately 26.4%, 62.7%, and 10.9% of the patients in the Validation cohort defined as high-risk by the LATITUDE criteria were further grouped into high-, intermediate-, and low-risk groups by the new model with significant differences in CSS. In the ARSIs cohort, high-risk group had a significantly shorter time to castration resistance than the intermediate-risk group.
Conclusions
The novel model based on prognostic factors can predict patient outcomes with high accuracy and reproducibility. The model may be used to optimize the treatment intensity of de novo mHSPC.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>39028395</pmid><doi>10.1007/s10147-024-02577-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1394-7506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1341-9625 |
ispartof | International journal of clinical oncology, 2024-10, Vol.29 (10), p.1574-1585 |
issn | 1341-9625 1437-7772 1437-7772 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11420339 |
source | Springer Nature |
subjects | Aged Aged, 80 and over Androgen Antagonists - therapeutic use Androgen Receptor Antagonists - therapeutic use Androgens Cancer Research Castration Humans Japan L-Lactate dehydrogenase Liver diseases Male Medical prognosis Medicine Medicine & Public Health Metastases Metastasis Middle Aged Oncology Original Original Article Prognosis Prostate cancer Prostatic Neoplasms - drug therapy Prostatic Neoplasms - pathology Reproducibility Retrospective Studies Risk groups Surgical Oncology |
title | A novel prognostic model of de novo metastatic hormone-sensitive prostate cancer to optimize treatment intensity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20prognostic%20model%20of%20de%20novo%20metastatic%20hormone-sensitive%20prostate%20cancer%20to%20optimize%20treatment%20intensity&rft.jtitle=International%20journal%20of%20clinical%20oncology&rft.au=Fujiwara,%20Hiroshi&rft.date=2024-10-01&rft.volume=29&rft.issue=10&rft.spage=1574&rft.epage=1585&rft.pages=1574-1585&rft.issn=1341-9625&rft.eissn=1437-7772&rft_id=info:doi/10.1007/s10147-024-02577-1&rft_dat=%3Cproquest_pubme%3E3082628541%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-d55d7151c168b01ea1c14f883ed582a7b48accb38902f8e974994de6c9cda64a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108441234&rft_id=info:pmid/39028395&rfr_iscdi=true |