Loading…

Electrical Control of Magnetic Resonance in Phase Change Materials

Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transit...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2024-09, Vol.24 (37), p.11476-11481
Main Authors: Chen, Tian-Yue, Ren, Haowen, Ghazikhanian, Nareg, Hage, Ralph El, Sasaki, Dayne Y., Salev, Pavel, Takamura, Yayoi, Schuller, Ivan K., Kent, Andrew D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33
container_end_page 11481
container_issue 37
container_start_page 11476
container_title Nano letters
container_volume 24
creator Chen, Tian-Yue
Ren, Haowen
Ghazikhanian, Nareg
Hage, Ralph El
Sasaki, Dayne Y.
Salev, Pavel
Takamura, Yayoi
Schuller, Ivan K.
Kent, Andrew D.
description Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.
doi_str_mv 10.1021/acs.nanolett.4c02697
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11421091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100914710</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVoqd203yCEpadc7GhWu9rdU0iN-wdcEkpyFtrZWVtmLTmSXMi3j4wdk1x6GoF-8-bNPMYugE-B53CtMUyttm6gGKcF8lw21RkbQyn4RDZN_uH0rosR-xzCmnPeiJJ_YiPR5AJAyDH7Ph8Iozeoh2zmbPRuyFyf_dFLS9Fg9peCS1OQMmOz-5UOlM1W2i4pIZG80UP4wj72qdDXYz1njz_mD7Nfk8Xdz9-z28VEC-Bx0kBXVwiSoEXd8kLUVEnRCpSikV0ly5pIS6CyrLToRdej7KDlEiXUleiEOGc3B93trt1Qh5Tc6kFtvdlo_6ycNur9jzUrtXT_FECRA28gKXw7KLgQjQpoIuEKnbXpBCovko-SJ-jqOMa7px2FqDYmIA2DtuR2QaVlklZRwR4tDih6F4Kn_mQGuNqHpFJI6jUkdQwptV2-XeTU9JpKAvgB2Lev3c7bdNf_a74A0YChaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914710</pqid></control><display><type>article</type><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D.</creator><creatorcontrib>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D. ; New York Univ. (NYU), NY (United States)</creatorcontrib><description>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c02697</identifier><identifier>PMID: 39231136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; magnetic properties ; materials ; MATERIALS SCIENCE ; metal−insulator transition (MIT) ; phase separation ; phase transitions ; resonance structures ; spin-torque ferromagnetic resonance ; synaptic weights tuning ; transition metal oxide ; voltage-triggered MIT</subject><ispartof>Nano letters, 2024-09, Vol.24 (37), p.11476-11481</ispartof><rights>2024 American Chemical Society</rights><rights>2024 American Chemical Society 2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</cites><orcidid>0000-0002-3800-992X ; 0000-0002-9078-7120 ; 0000-0002-1984-4305 ; 0000-0002-1171-9219 ; 0000-0002-7946-9279 ; 0000-0002-9050-8822 ; 0000000290787120 ; 0000000211719219 ; 0000000219844305 ; 0000000279469279 ; 000000023800992X ; 0000000290508822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2439650$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tian-Yue</creatorcontrib><creatorcontrib>Ren, Haowen</creatorcontrib><creatorcontrib>Ghazikhanian, Nareg</creatorcontrib><creatorcontrib>Hage, Ralph El</creatorcontrib><creatorcontrib>Sasaki, Dayne Y.</creatorcontrib><creatorcontrib>Salev, Pavel</creatorcontrib><creatorcontrib>Takamura, Yayoi</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</description><subject>Letter</subject><subject>magnetic properties</subject><subject>materials</subject><subject>MATERIALS SCIENCE</subject><subject>metal−insulator transition (MIT)</subject><subject>phase separation</subject><subject>phase transitions</subject><subject>resonance structures</subject><subject>spin-torque ferromagnetic resonance</subject><subject>synaptic weights tuning</subject><subject>transition metal oxide</subject><subject>voltage-triggered MIT</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rGzEQxUVoqd203yCEpadc7GhWu9rdU0iN-wdcEkpyFtrZWVtmLTmSXMi3j4wdk1x6GoF-8-bNPMYugE-B53CtMUyttm6gGKcF8lw21RkbQyn4RDZN_uH0rosR-xzCmnPeiJJ_YiPR5AJAyDH7Ph8Iozeoh2zmbPRuyFyf_dFLS9Fg9peCS1OQMmOz-5UOlM1W2i4pIZG80UP4wj72qdDXYz1njz_mD7Nfk8Xdz9-z28VEC-Bx0kBXVwiSoEXd8kLUVEnRCpSikV0ly5pIS6CyrLToRdej7KDlEiXUleiEOGc3B93trt1Qh5Tc6kFtvdlo_6ycNur9jzUrtXT_FECRA28gKXw7KLgQjQpoIuEKnbXpBCovko-SJ-jqOMa7px2FqDYmIA2DtuR2QaVlklZRwR4tDih6F4Kn_mQGuNqHpFJI6jUkdQwptV2-XeTU9JpKAvgB2Lev3c7bdNf_a74A0YChaw</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Chen, Tian-Yue</creator><creator>Ren, Haowen</creator><creator>Ghazikhanian, Nareg</creator><creator>Hage, Ralph El</creator><creator>Sasaki, Dayne Y.</creator><creator>Salev, Pavel</creator><creator>Takamura, Yayoi</creator><creator>Schuller, Ivan K.</creator><creator>Kent, Andrew D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3800-992X</orcidid><orcidid>https://orcid.org/0000-0002-9078-7120</orcidid><orcidid>https://orcid.org/0000-0002-1984-4305</orcidid><orcidid>https://orcid.org/0000-0002-1171-9219</orcidid><orcidid>https://orcid.org/0000-0002-7946-9279</orcidid><orcidid>https://orcid.org/0000-0002-9050-8822</orcidid><orcidid>https://orcid.org/0000000290787120</orcidid><orcidid>https://orcid.org/0000000211719219</orcidid><orcidid>https://orcid.org/0000000219844305</orcidid><orcidid>https://orcid.org/0000000279469279</orcidid><orcidid>https://orcid.org/000000023800992X</orcidid><orcidid>https://orcid.org/0000000290508822</orcidid></search><sort><creationdate>20240918</creationdate><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><author>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Letter</topic><topic>magnetic properties</topic><topic>materials</topic><topic>MATERIALS SCIENCE</topic><topic>metal−insulator transition (MIT)</topic><topic>phase separation</topic><topic>phase transitions</topic><topic>resonance structures</topic><topic>spin-torque ferromagnetic resonance</topic><topic>synaptic weights tuning</topic><topic>transition metal oxide</topic><topic>voltage-triggered MIT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tian-Yue</creatorcontrib><creatorcontrib>Ren, Haowen</creatorcontrib><creatorcontrib>Ghazikhanian, Nareg</creatorcontrib><creatorcontrib>Hage, Ralph El</creatorcontrib><creatorcontrib>Sasaki, Dayne Y.</creatorcontrib><creatorcontrib>Salev, Pavel</creatorcontrib><creatorcontrib>Takamura, Yayoi</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tian-Yue</au><au>Ren, Haowen</au><au>Ghazikhanian, Nareg</au><au>Hage, Ralph El</au><au>Sasaki, Dayne Y.</au><au>Salev, Pavel</au><au>Takamura, Yayoi</au><au>Schuller, Ivan K.</au><au>Kent, Andrew D.</au><aucorp>New York Univ. (NYU), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Control of Magnetic Resonance in Phase Change Materials</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>24</volume><issue>37</issue><spage>11476</spage><epage>11481</epage><pages>11476-11481</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39231136</pmid><doi>10.1021/acs.nanolett.4c02697</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3800-992X</orcidid><orcidid>https://orcid.org/0000-0002-9078-7120</orcidid><orcidid>https://orcid.org/0000-0002-1984-4305</orcidid><orcidid>https://orcid.org/0000-0002-1171-9219</orcidid><orcidid>https://orcid.org/0000-0002-7946-9279</orcidid><orcidid>https://orcid.org/0000-0002-9050-8822</orcidid><orcidid>https://orcid.org/0000000290787120</orcidid><orcidid>https://orcid.org/0000000211719219</orcidid><orcidid>https://orcid.org/0000000219844305</orcidid><orcidid>https://orcid.org/0000000279469279</orcidid><orcidid>https://orcid.org/000000023800992X</orcidid><orcidid>https://orcid.org/0000000290508822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-09, Vol.24 (37), p.11476-11481
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11421091
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Letter
magnetic properties
materials
MATERIALS SCIENCE
metal−insulator transition (MIT)
phase separation
phase transitions
resonance structures
spin-torque ferromagnetic resonance
synaptic weights tuning
transition metal oxide
voltage-triggered MIT
title Electrical Control of Magnetic Resonance in Phase Change Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Control%20of%20Magnetic%20Resonance%20in%20Phase%20Change%20Materials&rft.jtitle=Nano%20letters&rft.au=Chen,%20Tian-Yue&rft.aucorp=New%20York%20Univ.%20(NYU),%20NY%20(United%20States)&rft.date=2024-09-18&rft.volume=24&rft.issue=37&rft.spage=11476&rft.epage=11481&rft.pages=11476-11481&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c02697&rft_dat=%3Cproquest_pubme%3E3100914710%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100914710&rft_id=info:pmid/39231136&rfr_iscdi=true