Loading…
Electrical Control of Magnetic Resonance in Phase Change Materials
Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transit...
Saved in:
Published in: | Nano letters 2024-09, Vol.24 (37), p.11476-11481 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33 |
container_end_page | 11481 |
container_issue | 37 |
container_start_page | 11476 |
container_title | Nano letters |
container_volume | 24 |
creator | Chen, Tian-Yue Ren, Haowen Ghazikhanian, Nareg Hage, Ralph El Sasaki, Dayne Y. Salev, Pavel Takamura, Yayoi Schuller, Ivan K. Kent, Andrew D. |
description | Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits. |
doi_str_mv | 10.1021/acs.nanolett.4c02697 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11421091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100914710</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVoqd203yCEpadc7GhWu9rdU0iN-wdcEkpyFtrZWVtmLTmSXMi3j4wdk1x6GoF-8-bNPMYugE-B53CtMUyttm6gGKcF8lw21RkbQyn4RDZN_uH0rosR-xzCmnPeiJJ_YiPR5AJAyDH7Ph8Iozeoh2zmbPRuyFyf_dFLS9Fg9peCS1OQMmOz-5UOlM1W2i4pIZG80UP4wj72qdDXYz1njz_mD7Nfk8Xdz9-z28VEC-Bx0kBXVwiSoEXd8kLUVEnRCpSikV0ly5pIS6CyrLToRdej7KDlEiXUleiEOGc3B93trt1Qh5Tc6kFtvdlo_6ycNur9jzUrtXT_FECRA28gKXw7KLgQjQpoIuEKnbXpBCovko-SJ-jqOMa7px2FqDYmIA2DtuR2QaVlklZRwR4tDih6F4Kn_mQGuNqHpFJI6jUkdQwptV2-XeTU9JpKAvgB2Lev3c7bdNf_a74A0YChaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914710</pqid></control><display><type>article</type><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D.</creator><creatorcontrib>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D. ; New York Univ. (NYU), NY (United States)</creatorcontrib><description>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c02697</identifier><identifier>PMID: 39231136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; magnetic properties ; materials ; MATERIALS SCIENCE ; metal−insulator transition (MIT) ; phase separation ; phase transitions ; resonance structures ; spin-torque ferromagnetic resonance ; synaptic weights tuning ; transition metal oxide ; voltage-triggered MIT</subject><ispartof>Nano letters, 2024-09, Vol.24 (37), p.11476-11481</ispartof><rights>2024 American Chemical Society</rights><rights>2024 American Chemical Society 2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</cites><orcidid>0000-0002-3800-992X ; 0000-0002-9078-7120 ; 0000-0002-1984-4305 ; 0000-0002-1171-9219 ; 0000-0002-7946-9279 ; 0000-0002-9050-8822 ; 0000000290787120 ; 0000000211719219 ; 0000000219844305 ; 0000000279469279 ; 000000023800992X ; 0000000290508822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2439650$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tian-Yue</creatorcontrib><creatorcontrib>Ren, Haowen</creatorcontrib><creatorcontrib>Ghazikhanian, Nareg</creatorcontrib><creatorcontrib>Hage, Ralph El</creatorcontrib><creatorcontrib>Sasaki, Dayne Y.</creatorcontrib><creatorcontrib>Salev, Pavel</creatorcontrib><creatorcontrib>Takamura, Yayoi</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</description><subject>Letter</subject><subject>magnetic properties</subject><subject>materials</subject><subject>MATERIALS SCIENCE</subject><subject>metal−insulator transition (MIT)</subject><subject>phase separation</subject><subject>phase transitions</subject><subject>resonance structures</subject><subject>spin-torque ferromagnetic resonance</subject><subject>synaptic weights tuning</subject><subject>transition metal oxide</subject><subject>voltage-triggered MIT</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rGzEQxUVoqd203yCEpadc7GhWu9rdU0iN-wdcEkpyFtrZWVtmLTmSXMi3j4wdk1x6GoF-8-bNPMYugE-B53CtMUyttm6gGKcF8lw21RkbQyn4RDZN_uH0rosR-xzCmnPeiJJ_YiPR5AJAyDH7Ph8Iozeoh2zmbPRuyFyf_dFLS9Fg9peCS1OQMmOz-5UOlM1W2i4pIZG80UP4wj72qdDXYz1njz_mD7Nfk8Xdz9-z28VEC-Bx0kBXVwiSoEXd8kLUVEnRCpSikV0ly5pIS6CyrLToRdej7KDlEiXUleiEOGc3B93trt1Qh5Tc6kFtvdlo_6ycNur9jzUrtXT_FECRA28gKXw7KLgQjQpoIuEKnbXpBCovko-SJ-jqOMa7px2FqDYmIA2DtuR2QaVlklZRwR4tDih6F4Kn_mQGuNqHpFJI6jUkdQwptV2-XeTU9JpKAvgB2Lev3c7bdNf_a74A0YChaw</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Chen, Tian-Yue</creator><creator>Ren, Haowen</creator><creator>Ghazikhanian, Nareg</creator><creator>Hage, Ralph El</creator><creator>Sasaki, Dayne Y.</creator><creator>Salev, Pavel</creator><creator>Takamura, Yayoi</creator><creator>Schuller, Ivan K.</creator><creator>Kent, Andrew D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3800-992X</orcidid><orcidid>https://orcid.org/0000-0002-9078-7120</orcidid><orcidid>https://orcid.org/0000-0002-1984-4305</orcidid><orcidid>https://orcid.org/0000-0002-1171-9219</orcidid><orcidid>https://orcid.org/0000-0002-7946-9279</orcidid><orcidid>https://orcid.org/0000-0002-9050-8822</orcidid><orcidid>https://orcid.org/0000000290787120</orcidid><orcidid>https://orcid.org/0000000211719219</orcidid><orcidid>https://orcid.org/0000000219844305</orcidid><orcidid>https://orcid.org/0000000279469279</orcidid><orcidid>https://orcid.org/000000023800992X</orcidid><orcidid>https://orcid.org/0000000290508822</orcidid></search><sort><creationdate>20240918</creationdate><title>Electrical Control of Magnetic Resonance in Phase Change Materials</title><author>Chen, Tian-Yue ; Ren, Haowen ; Ghazikhanian, Nareg ; Hage, Ralph El ; Sasaki, Dayne Y. ; Salev, Pavel ; Takamura, Yayoi ; Schuller, Ivan K. ; Kent, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Letter</topic><topic>magnetic properties</topic><topic>materials</topic><topic>MATERIALS SCIENCE</topic><topic>metal−insulator transition (MIT)</topic><topic>phase separation</topic><topic>phase transitions</topic><topic>resonance structures</topic><topic>spin-torque ferromagnetic resonance</topic><topic>synaptic weights tuning</topic><topic>transition metal oxide</topic><topic>voltage-triggered MIT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tian-Yue</creatorcontrib><creatorcontrib>Ren, Haowen</creatorcontrib><creatorcontrib>Ghazikhanian, Nareg</creatorcontrib><creatorcontrib>Hage, Ralph El</creatorcontrib><creatorcontrib>Sasaki, Dayne Y.</creatorcontrib><creatorcontrib>Salev, Pavel</creatorcontrib><creatorcontrib>Takamura, Yayoi</creatorcontrib><creatorcontrib>Schuller, Ivan K.</creatorcontrib><creatorcontrib>Kent, Andrew D.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tian-Yue</au><au>Ren, Haowen</au><au>Ghazikhanian, Nareg</au><au>Hage, Ralph El</au><au>Sasaki, Dayne Y.</au><au>Salev, Pavel</au><au>Takamura, Yayoi</au><au>Schuller, Ivan K.</au><au>Kent, Andrew D.</au><aucorp>New York Univ. (NYU), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Control of Magnetic Resonance in Phase Change Materials</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>24</volume><issue>37</issue><spage>11476</spage><epage>11481</epage><pages>11476-11481</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Metal–insulator transitions (MITs) in resistive switching materials can be triggered by an electric stimulus that produces significant changes in the electrical response. When these phases have distinct magnetic characteristics, dramatic changes in the spin excitations are also expected. The transition metal oxide La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic metal at low temperatures and a paramagnetic insulator above room temperature. When LSMO is in its metallic phase, a critical electrical bias has been shown to lead to an MIT that results in the formation of a paramagnetic resistive barrier transverse to the applied electric field. Using spin-transfer ferromagnetic resonance spectroscopy, we show that even for electrical biases less than the critical value that triggers the MIT, there is magnetic phase separation, with the spin-excitation resonances varying systematically with applied bias. Therefore, voltage-triggered MITs in LSMO can alter magnetic resonance characteristics, offering an effective method for tuning synaptic weights in neuromorphic circuits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39231136</pmid><doi>10.1021/acs.nanolett.4c02697</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3800-992X</orcidid><orcidid>https://orcid.org/0000-0002-9078-7120</orcidid><orcidid>https://orcid.org/0000-0002-1984-4305</orcidid><orcidid>https://orcid.org/0000-0002-1171-9219</orcidid><orcidid>https://orcid.org/0000-0002-7946-9279</orcidid><orcidid>https://orcid.org/0000-0002-9050-8822</orcidid><orcidid>https://orcid.org/0000000290787120</orcidid><orcidid>https://orcid.org/0000000211719219</orcidid><orcidid>https://orcid.org/0000000219844305</orcidid><orcidid>https://orcid.org/0000000279469279</orcidid><orcidid>https://orcid.org/000000023800992X</orcidid><orcidid>https://orcid.org/0000000290508822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-09, Vol.24 (37), p.11476-11481 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11421091 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Letter magnetic properties materials MATERIALS SCIENCE metal−insulator transition (MIT) phase separation phase transitions resonance structures spin-torque ferromagnetic resonance synaptic weights tuning transition metal oxide voltage-triggered MIT |
title | Electrical Control of Magnetic Resonance in Phase Change Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Control%20of%20Magnetic%20Resonance%20in%20Phase%20Change%20Materials&rft.jtitle=Nano%20letters&rft.au=Chen,%20Tian-Yue&rft.aucorp=New%20York%20Univ.%20(NYU),%20NY%20(United%20States)&rft.date=2024-09-18&rft.volume=24&rft.issue=37&rft.spage=11476&rft.epage=11481&rft.pages=11476-11481&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c02697&rft_dat=%3Cproquest_pubme%3E3100914710%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a310t-91d87c16e1bcab0438e763b3c6396d7658eea61e557a3f3dfc6d1b06c61873d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100914710&rft_id=info:pmid/39231136&rfr_iscdi=true |