Loading…
Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation
Evidence indicates that combinations of anti‐EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a pros...
Saved in:
Published in: | Cancer science 2024-10, Vol.115 (10), p.3455-3465 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3465 |
container_issue | 10 |
container_start_page | 3455 |
container_title | Cancer science |
container_volume | 115 |
creator | Ugai, Satoko Yao, Qian Takashima, Yasutoshi Zhong, Yuxue Matsuda, Kosuke Kawamura, Hidetaka Imamura, Yu Okadome, Kazuo Mima, Kosuke Arima, Kota Kosumi, Keisuke Song, Mingyang Meyerhardt, Jeffrey A. Giannakis, Marios Nowak, Jonathan A. Ugai, Tomotaka Ogino, Shuji |
description | Evidence indicates that combinations of anti‐EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS‐wild‐type tumors (31%). KRAS c.34G>T mutants showed higher CIMP‐high prevalence (14%) and lower CIMP‐negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors. Compared with BRAF‐mutated tumors, KRAS c.34G>T mutants showed more frequent LINE‐1 hypomethylation, a biomarker for early‐onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF‐wild‐type colorectal carcinomas, compared with KRAS‐wild‐type tumors, multivariable‐adjusted colorectal cancer‐specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05–3.17) in KRAS c.34G>T (p.G12C)‐mutated tumors (p = 0.035) and 1.57 (1.22–2.02) in other KRAS‐mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma.
The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants and other KRAS mutants than in KRAS‐wild‐type tumors. KRAS c.34G>T mutants showed higher CIMP‐high prevalence and lower CIMP‐negative prevalence compared with other KRAS mutants. Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors. |
doi_str_mv | 10.1111/cas.16262 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11448363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112430002</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2152-e6bd72d51c6af455f7465d1847a2f0f6bd8e9d8dbb014eae478801ae0cfb34113</originalsourceid><addsrcrecordid>eNpdkVtrFTEUhYNYbK0--Ack4EuFzmluc3tRDoM9FQuCrc9hTyZzTkommSYZS_-98fSCmpe92evLYm8WQu8oWdH8zhTEFa1YxV6gI8pFW9SEVC_3fV20hLND9DrGG0J4JVrxCh3yPGwbIo5Q6qxxRvkZ0s5bvzUK7CmevNVqsRBOMbgBz8FvnY_JKDxqSEvQEfsRq_whaJXAYgVBGecniPjOpB3-9mN9hdWKi82na3wyrzaUdR_xtCRIxrs36GAEG_Xbx3qMfp5_ue4uisvvm6_d-rKYGS1Zoat-qNlQUlXBKMpyrEVVDrQRNbCRjFltdDs0Q98TKjRoUTcNoaCJGnsuKOXH6POD77z0kx6UdimAlXMwE4R76cHIfxVndnLrf0lKhWh4xbPDyaND8LeLjklOJiptLTjtlyg5yVhDSdlk9MN_6I1fgsv3SU4pE5wQwjL1_u-Vnnd5SiQDZw_AnbH6_lmnRP6JWuao5T5q2a2v9g3_DSTim0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112430002</pqid></control><display><type>article</type><title>Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ugai, Satoko ; Yao, Qian ; Takashima, Yasutoshi ; Zhong, Yuxue ; Matsuda, Kosuke ; Kawamura, Hidetaka ; Imamura, Yu ; Okadome, Kazuo ; Mima, Kosuke ; Arima, Kota ; Kosumi, Keisuke ; Song, Mingyang ; Meyerhardt, Jeffrey A. ; Giannakis, Marios ; Nowak, Jonathan A. ; Ugai, Tomotaka ; Ogino, Shuji</creator><creatorcontrib>Ugai, Satoko ; Yao, Qian ; Takashima, Yasutoshi ; Zhong, Yuxue ; Matsuda, Kosuke ; Kawamura, Hidetaka ; Imamura, Yu ; Okadome, Kazuo ; Mima, Kosuke ; Arima, Kota ; Kosumi, Keisuke ; Song, Mingyang ; Meyerhardt, Jeffrey A. ; Giannakis, Marios ; Nowak, Jonathan A. ; Ugai, Tomotaka ; Ogino, Shuji</creatorcontrib><description>Evidence indicates that combinations of anti‐EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS‐wild‐type tumors (31%). KRAS c.34G>T mutants showed higher CIMP‐high prevalence (14%) and lower CIMP‐negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors. Compared with BRAF‐mutated tumors, KRAS c.34G>T mutants showed more frequent LINE‐1 hypomethylation, a biomarker for early‐onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF‐wild‐type colorectal carcinomas, compared with KRAS‐wild‐type tumors, multivariable‐adjusted colorectal cancer‐specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05–3.17) in KRAS c.34G>T (p.G12C)‐mutated tumors (p = 0.035) and 1.57 (1.22–2.02) in other KRAS‐mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma.
The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants and other KRAS mutants than in KRAS‐wild‐type tumors. KRAS c.34G>T mutants showed higher CIMP‐high prevalence and lower CIMP‐negative prevalence compared with other KRAS mutants. Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors.</description><identifier>ISSN: 1347-9032</identifier><identifier>ISSN: 1349-7006</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.16262</identifier><identifier>PMID: 39039804</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>adagrasib ; Adult ; Aged ; Aged, 80 and over ; Biobanks ; Cancer therapies ; Cecum ; Class I Phosphatidylinositol 3-Kinases - genetics ; Cohort analysis ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - mortality ; Colorectal Neoplasms - pathology ; colorectal tumor ; Committees ; CpG island methylator phenotype ; CpG islands ; CpG Islands - genetics ; DNA Methylation ; Family medical history ; Female ; Genes ; Humans ; Hypotheses ; K-Ras protein ; Kinases ; KRAS ; Male ; Medical personnel ; Medical prognosis ; Microsatellite Instability ; Middle Aged ; Mortality ; Mutants ; Mutation ; Original ; Patients ; Phenotypes ; Polymerase chain reaction ; Prognosis ; Prospective Studies ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) - genetics ; sotorasib ; Survival analysis ; Tumors ; Variables</subject><ispartof>Cancer science, 2024-10, Vol.115 (10), p.3455-3465</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2024 The Author(s). Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0182-5269 ; 0000-0002-0036-0124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3112430002/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3112430002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39039804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ugai, Satoko</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Takashima, Yasutoshi</creatorcontrib><creatorcontrib>Zhong, Yuxue</creatorcontrib><creatorcontrib>Matsuda, Kosuke</creatorcontrib><creatorcontrib>Kawamura, Hidetaka</creatorcontrib><creatorcontrib>Imamura, Yu</creatorcontrib><creatorcontrib>Okadome, Kazuo</creatorcontrib><creatorcontrib>Mima, Kosuke</creatorcontrib><creatorcontrib>Arima, Kota</creatorcontrib><creatorcontrib>Kosumi, Keisuke</creatorcontrib><creatorcontrib>Song, Mingyang</creatorcontrib><creatorcontrib>Meyerhardt, Jeffrey A.</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Nowak, Jonathan A.</creatorcontrib><creatorcontrib>Ugai, Tomotaka</creatorcontrib><creatorcontrib>Ogino, Shuji</creatorcontrib><title>Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Evidence indicates that combinations of anti‐EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS‐wild‐type tumors (31%). KRAS c.34G>T mutants showed higher CIMP‐high prevalence (14%) and lower CIMP‐negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors. Compared with BRAF‐mutated tumors, KRAS c.34G>T mutants showed more frequent LINE‐1 hypomethylation, a biomarker for early‐onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF‐wild‐type colorectal carcinomas, compared with KRAS‐wild‐type tumors, multivariable‐adjusted colorectal cancer‐specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05–3.17) in KRAS c.34G>T (p.G12C)‐mutated tumors (p = 0.035) and 1.57 (1.22–2.02) in other KRAS‐mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma.
The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants and other KRAS mutants than in KRAS‐wild‐type tumors. KRAS c.34G>T mutants showed higher CIMP‐high prevalence and lower CIMP‐negative prevalence compared with other KRAS mutants. Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors.</description><subject>adagrasib</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biobanks</subject><subject>Cancer therapies</subject><subject>Cecum</subject><subject>Class I Phosphatidylinositol 3-Kinases - genetics</subject><subject>Cohort analysis</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - mortality</subject><subject>Colorectal Neoplasms - pathology</subject><subject>colorectal tumor</subject><subject>Committees</subject><subject>CpG island methylator phenotype</subject><subject>CpG islands</subject><subject>CpG Islands - genetics</subject><subject>DNA Methylation</subject><subject>Family medical history</subject><subject>Female</subject><subject>Genes</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>K-Ras protein</subject><subject>Kinases</subject><subject>KRAS</subject><subject>Male</subject><subject>Medical personnel</subject><subject>Medical prognosis</subject><subject>Microsatellite Instability</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Original</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Polymerase chain reaction</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>sotorasib</subject><subject>Survival analysis</subject><subject>Tumors</subject><subject>Variables</subject><issn>1347-9032</issn><issn>1349-7006</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkVtrFTEUhYNYbK0--Ack4EuFzmluc3tRDoM9FQuCrc9hTyZzTkommSYZS_-98fSCmpe92evLYm8WQu8oWdH8zhTEFa1YxV6gI8pFW9SEVC_3fV20hLND9DrGG0J4JVrxCh3yPGwbIo5Q6qxxRvkZ0s5bvzUK7CmevNVqsRBOMbgBz8FvnY_JKDxqSEvQEfsRq_whaJXAYgVBGecniPjOpB3-9mN9hdWKi82na3wyrzaUdR_xtCRIxrs36GAEG_Xbx3qMfp5_ue4uisvvm6_d-rKYGS1Zoat-qNlQUlXBKMpyrEVVDrQRNbCRjFltdDs0Q98TKjRoUTcNoaCJGnsuKOXH6POD77z0kx6UdimAlXMwE4R76cHIfxVndnLrf0lKhWh4xbPDyaND8LeLjklOJiptLTjtlyg5yVhDSdlk9MN_6I1fgsv3SU4pE5wQwjL1_u-Vnnd5SiQDZw_AnbH6_lmnRP6JWuao5T5q2a2v9g3_DSTim0Y</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Ugai, Satoko</creator><creator>Yao, Qian</creator><creator>Takashima, Yasutoshi</creator><creator>Zhong, Yuxue</creator><creator>Matsuda, Kosuke</creator><creator>Kawamura, Hidetaka</creator><creator>Imamura, Yu</creator><creator>Okadome, Kazuo</creator><creator>Mima, Kosuke</creator><creator>Arima, Kota</creator><creator>Kosumi, Keisuke</creator><creator>Song, Mingyang</creator><creator>Meyerhardt, Jeffrey A.</creator><creator>Giannakis, Marios</creator><creator>Nowak, Jonathan A.</creator><creator>Ugai, Tomotaka</creator><creator>Ogino, Shuji</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0182-5269</orcidid><orcidid>https://orcid.org/0000-0002-0036-0124</orcidid></search><sort><creationdate>202410</creationdate><title>Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation</title><author>Ugai, Satoko ; Yao, Qian ; Takashima, Yasutoshi ; Zhong, Yuxue ; Matsuda, Kosuke ; Kawamura, Hidetaka ; Imamura, Yu ; Okadome, Kazuo ; Mima, Kosuke ; Arima, Kota ; Kosumi, Keisuke ; Song, Mingyang ; Meyerhardt, Jeffrey A. ; Giannakis, Marios ; Nowak, Jonathan A. ; Ugai, Tomotaka ; Ogino, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2152-e6bd72d51c6af455f7465d1847a2f0f6bd8e9d8dbb014eae478801ae0cfb34113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adagrasib</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biobanks</topic><topic>Cancer therapies</topic><topic>Cecum</topic><topic>Class I Phosphatidylinositol 3-Kinases - genetics</topic><topic>Cohort analysis</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - mortality</topic><topic>Colorectal Neoplasms - pathology</topic><topic>colorectal tumor</topic><topic>Committees</topic><topic>CpG island methylator phenotype</topic><topic>CpG islands</topic><topic>CpG Islands - genetics</topic><topic>DNA Methylation</topic><topic>Family medical history</topic><topic>Female</topic><topic>Genes</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>K-Ras protein</topic><topic>Kinases</topic><topic>KRAS</topic><topic>Male</topic><topic>Medical personnel</topic><topic>Medical prognosis</topic><topic>Microsatellite Instability</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Original</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Polymerase chain reaction</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>sotorasib</topic><topic>Survival analysis</topic><topic>Tumors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugai, Satoko</creatorcontrib><creatorcontrib>Yao, Qian</creatorcontrib><creatorcontrib>Takashima, Yasutoshi</creatorcontrib><creatorcontrib>Zhong, Yuxue</creatorcontrib><creatorcontrib>Matsuda, Kosuke</creatorcontrib><creatorcontrib>Kawamura, Hidetaka</creatorcontrib><creatorcontrib>Imamura, Yu</creatorcontrib><creatorcontrib>Okadome, Kazuo</creatorcontrib><creatorcontrib>Mima, Kosuke</creatorcontrib><creatorcontrib>Arima, Kota</creatorcontrib><creatorcontrib>Kosumi, Keisuke</creatorcontrib><creatorcontrib>Song, Mingyang</creatorcontrib><creatorcontrib>Meyerhardt, Jeffrey A.</creatorcontrib><creatorcontrib>Giannakis, Marios</creatorcontrib><creatorcontrib>Nowak, Jonathan A.</creatorcontrib><creatorcontrib>Ugai, Tomotaka</creatorcontrib><creatorcontrib>Ogino, Shuji</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ugai, Satoko</au><au>Yao, Qian</au><au>Takashima, Yasutoshi</au><au>Zhong, Yuxue</au><au>Matsuda, Kosuke</au><au>Kawamura, Hidetaka</au><au>Imamura, Yu</au><au>Okadome, Kazuo</au><au>Mima, Kosuke</au><au>Arima, Kota</au><au>Kosumi, Keisuke</au><au>Song, Mingyang</au><au>Meyerhardt, Jeffrey A.</au><au>Giannakis, Marios</au><au>Nowak, Jonathan A.</au><au>Ugai, Tomotaka</au><au>Ogino, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2024-10</date><risdate>2024</risdate><volume>115</volume><issue>10</issue><spage>3455</spage><epage>3465</epage><pages>3455-3465</pages><issn>1347-9032</issn><issn>1349-7006</issn><eissn>1349-7006</eissn><abstract>Evidence indicates that combinations of anti‐EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS‐wild‐type tumors (31%). KRAS c.34G>T mutants showed higher CIMP‐high prevalence (14%) and lower CIMP‐negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors. Compared with BRAF‐mutated tumors, KRAS c.34G>T mutants showed more frequent LINE‐1 hypomethylation, a biomarker for early‐onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF‐wild‐type colorectal carcinomas, compared with KRAS‐wild‐type tumors, multivariable‐adjusted colorectal cancer‐specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05–3.17) in KRAS c.34G>T (p.G12C)‐mutated tumors (p = 0.035) and 1.57 (1.22–2.02) in other KRAS‐mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)‐mutated colorectal carcinoma.
The CpG island methylator phenotype (CIMP)‐low prevalence was similarly higher in KRAS c.34G>T mutants and other KRAS mutants than in KRAS‐wild‐type tumors. KRAS c.34G>T mutants showed higher CIMP‐high prevalence and lower CIMP‐negative prevalence compared with other KRAS mutants. Similar to other KRAS mutants, KRAS c.34G>T‐mutated tumors were associated with cecal location, non‐microsatellite instability (MSI)‐high status, BRAF wild type, and PIK3CA mutation when compared with KRAS‐wild‐type tumors.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>39039804</pmid><doi>10.1111/cas.16262</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0182-5269</orcidid><orcidid>https://orcid.org/0000-0002-0036-0124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2024-10, Vol.115 (10), p.3455-3465 |
issn | 1347-9032 1349-7006 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11448363 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest); PubMed Central |
subjects | adagrasib Adult Aged Aged, 80 and over Biobanks Cancer therapies Cecum Class I Phosphatidylinositol 3-Kinases - genetics Cohort analysis Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - genetics Colorectal Neoplasms - mortality Colorectal Neoplasms - pathology colorectal tumor Committees CpG island methylator phenotype CpG islands CpG Islands - genetics DNA Methylation Family medical history Female Genes Humans Hypotheses K-Ras protein Kinases KRAS Male Medical personnel Medical prognosis Microsatellite Instability Middle Aged Mortality Mutants Mutation Original Patients Phenotypes Polymerase chain reaction Prognosis Prospective Studies Proteins Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins p21(ras) - genetics sotorasib Survival analysis Tumors Variables |
title | Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinicopathological,%20molecular,%20and%20prognostic%20features%20of%20colorectal%20carcinomas%20with%20KRAS%20c.34G%3ET%20(p.G12C)%20mutation&rft.jtitle=Cancer%20science&rft.au=Ugai,%20Satoko&rft.date=2024-10&rft.volume=115&rft.issue=10&rft.spage=3455&rft.epage=3465&rft.pages=3455-3465&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.16262&rft_dat=%3Cproquest_pubme%3E3112430002%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2152-e6bd72d51c6af455f7465d1847a2f0f6bd8e9d8dbb014eae478801ae0cfb34113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112430002&rft_id=info:pmid/39039804&rfr_iscdi=true |