Loading…

Effect on DNA relaxation of the single Thr718Ala mutation in human topoisomerase I: a functional and molecular dynamics study

The functional and dynamical properties of the human topoisomerase I Thr718Ala mutant have been compared to that of the wild-type enzyme using functional assays and molecular dynamics (MD) simulations. At physiological ionic strength, the cleavage and religation rates, evaluated on oligonucleotides...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2005-01, Vol.33 (10), p.3339-3350
Main Authors: Chillemi, Giovanni, Fiorani, Paola, Castelli, Silvia, Bruselles, Alessandro, Benedetti, Piero, Desideri, Alessandro
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The functional and dynamical properties of the human topoisomerase I Thr718Ala mutant have been compared to that of the wild-type enzyme using functional assays and molecular dynamics (MD) simulations. At physiological ionic strength, the cleavage and religation rates, evaluated on oligonucleotides containing the preferred topoisomerase I DNA sequence, are almost identical for the wild-type and the mutated enzymes, as is the cleavage/religation equilibrium. On the other hand, the Thr718Ala mutant shows a decreased efficiency in a DNA plasmid relaxation assay. The MD simulation, carried out on the enzyme complexed with its preferred DNA substrate, indicates that the mutant has a different dynamic behavior compared to the wild-type enzyme. Interestingly, no changes are observed in the proximity of the mutation site, whilst a different flexibility is detected in regions contacting the DNA scissile strand, such as the linker and the V-shaped α helices. Taken together, the functional and simulation results indicate a direct communication between the mutation site and regions located relatively far away, such as the linker domain, that with their altered flexibility confer a reduced DNA relaxation efficiency. These results provide evidence that the comprehension of the topoisomerase I dynamical properties are an important element in the understanding of its complex catalytic cycle.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gki642