Loading…
Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofa...
Saved in:
Published in: | Advanced healthcare materials 2023-01, Vol.12 (2), p.e2201891-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | e2201891 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Díaz‐Payno, Pedro J. Kalogeropoulou, Maria Muntz, Iain Kingma, Esther Kops, Nicole D'Este, Matteo Koenderink, Gijsje H. Fratila‐Apachitei, Lidy E. Osch, Gerjo J. V. M. Zadpoor, Amir A. |
description | 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept. |
doi_str_mv | 10.1002/adhm.202201891 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765223216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</originalsourceid><addsrcrecordid>eNqFkcuO0zAUhiMEYkbDbFkiS2zYtPgWJ1mhmXSgSB2xaFlbJ8lJ6lFiFzuZUXc8AjvejyfBVYdy2eDNsezPn87xnyQvGZ0zSvlbaLbDnFPOKcsL9iQ556zgM67S4ulpL-lZchnCHY1LpUzl7HlyJpSgOZXZefJ9_YB9b2z34-u3Be7QNmhHst7CDuPJNQRsyMaDDa3zA4zGWeJaAmQ5DWDJLQa09XY_QE_Wo3eHWkZfiG9XEFVELsi1cTtv7BhNpbNh9FM9kqgjJfjR9NAh2ZgQJiQ3tjMWMcLdi-RZC33Ay8d6kXx-f7Mpl7PVpw8fy6vVrJaqYLOspQ2nyFpEUVUyyzgC1CxvK4pFgSKtc5HyBlVW0SZPVSZqqBgHDkxKCVRcJO-O3t1UDdjUcXoPvY4ND-D32oHRf99Ys9Wdu9eMSRWFRTS8eTR492XCMOrBhDp-Alh0U9A8E1RwmqdZRF__g965yds4X6RUyrngTEVqfqRq70Lw2J66YVQfcteH3PUp9_jg1Z8znPBfKUegOAIPpsf9f3T6arG8_S3_Cd-Ov34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765223216</pqid></control><display><type>article</type><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</creator><creatorcontrib>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</creatorcontrib><description>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202201891</identifier><identifier>PMID: 36308047</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 4D bioprinting ; Alginates ; Alginates - chemistry ; Alginic acid ; biofabrication ; Bioprinting ; Bone marrow ; Cartilage ; Cell viability ; Cellular structure ; Flat surfaces ; Histology ; Humans ; Hyaluronic Acid ; Hydrogels ; Inks ; Mesenchymal Stem Cells ; Mesenchyme ; Multilayers ; Printing, Three-Dimensional ; Radius of curvature ; Scaffolds ; shape‐change ; smart bioinks ; Stromal cells ; Swelling ; Three dimensional printing ; Time dependence ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Tyramine</subject><ispartof>Advanced healthcare materials, 2023-01, Vol.12 (2), p.e2201891-n/a</ispartof><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</citedby><cites>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</cites><orcidid>0000-0002-8434-8316 ; 0000-0002-7823-8807 ; 0000-0002-7341-4445 ; 0000-0003-3234-2112 ; 0000-0003-1852-6409 ; 0000-0002-0424-8172 ; 0000-0002-1084-5766 ; 0000-0002-3744-9093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36308047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz‐Payno, Pedro J.</creatorcontrib><creatorcontrib>Kalogeropoulou, Maria</creatorcontrib><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Kingma, Esther</creatorcontrib><creatorcontrib>Kops, Nicole</creatorcontrib><creatorcontrib>D'Este, Matteo</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Osch, Gerjo J. V. M.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</description><subject>3-D printers</subject><subject>4D bioprinting</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>biofabrication</subject><subject>Bioprinting</subject><subject>Bone marrow</subject><subject>Cartilage</subject><subject>Cell viability</subject><subject>Cellular structure</subject><subject>Flat surfaces</subject><subject>Histology</subject><subject>Humans</subject><subject>Hyaluronic Acid</subject><subject>Hydrogels</subject><subject>Inks</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchyme</subject><subject>Multilayers</subject><subject>Printing, Three-Dimensional</subject><subject>Radius of curvature</subject><subject>Scaffolds</subject><subject>shape‐change</subject><subject>smart bioinks</subject><subject>Stromal cells</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Time dependence</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tyramine</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcuO0zAUhiMEYkbDbFkiS2zYtPgWJ1mhmXSgSB2xaFlbJ8lJ6lFiFzuZUXc8AjvejyfBVYdy2eDNsezPn87xnyQvGZ0zSvlbaLbDnFPOKcsL9iQ556zgM67S4ulpL-lZchnCHY1LpUzl7HlyJpSgOZXZefJ9_YB9b2z34-u3Be7QNmhHst7CDuPJNQRsyMaDDa3zA4zGWeJaAmQ5DWDJLQa09XY_QE_Wo3eHWkZfiG9XEFVELsi1cTtv7BhNpbNh9FM9kqgjJfjR9NAh2ZgQJiQ3tjMWMcLdi-RZC33Ay8d6kXx-f7Mpl7PVpw8fy6vVrJaqYLOspQ2nyFpEUVUyyzgC1CxvK4pFgSKtc5HyBlVW0SZPVSZqqBgHDkxKCVRcJO-O3t1UDdjUcXoPvY4ND-D32oHRf99Ys9Wdu9eMSRWFRTS8eTR492XCMOrBhDp-Alh0U9A8E1RwmqdZRF__g965yds4X6RUyrngTEVqfqRq70Lw2J66YVQfcteH3PUp9_jg1Z8znPBfKUegOAIPpsf9f3T6arG8_S3_Cd-Ov34</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Díaz‐Payno, Pedro J.</creator><creator>Kalogeropoulou, Maria</creator><creator>Muntz, Iain</creator><creator>Kingma, Esther</creator><creator>Kops, Nicole</creator><creator>D'Este, Matteo</creator><creator>Koenderink, Gijsje H.</creator><creator>Fratila‐Apachitei, Lidy E.</creator><creator>Osch, Gerjo J. V. M.</creator><creator>Zadpoor, Amir A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8434-8316</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid><orcidid>https://orcid.org/0000-0002-7341-4445</orcidid><orcidid>https://orcid.org/0000-0003-3234-2112</orcidid><orcidid>https://orcid.org/0000-0003-1852-6409</orcidid><orcidid>https://orcid.org/0000-0002-0424-8172</orcidid><orcidid>https://orcid.org/0000-0002-1084-5766</orcidid><orcidid>https://orcid.org/0000-0002-3744-9093</orcidid></search><sort><creationdate>20230101</creationdate><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><author>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>4D bioprinting</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>biofabrication</topic><topic>Bioprinting</topic><topic>Bone marrow</topic><topic>Cartilage</topic><topic>Cell viability</topic><topic>Cellular structure</topic><topic>Flat surfaces</topic><topic>Histology</topic><topic>Humans</topic><topic>Hyaluronic Acid</topic><topic>Hydrogels</topic><topic>Inks</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchyme</topic><topic>Multilayers</topic><topic>Printing, Three-Dimensional</topic><topic>Radius of curvature</topic><topic>Scaffolds</topic><topic>shape‐change</topic><topic>smart bioinks</topic><topic>Stromal cells</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Time dependence</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tyramine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz‐Payno, Pedro J.</creatorcontrib><creatorcontrib>Kalogeropoulou, Maria</creatorcontrib><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Kingma, Esther</creatorcontrib><creatorcontrib>Kops, Nicole</creatorcontrib><creatorcontrib>D'Este, Matteo</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Osch, Gerjo J. V. M.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz‐Payno, Pedro J.</au><au>Kalogeropoulou, Maria</au><au>Muntz, Iain</au><au>Kingma, Esther</au><au>Kops, Nicole</au><au>D'Este, Matteo</au><au>Koenderink, Gijsje H.</au><au>Fratila‐Apachitei, Lidy E.</au><au>Osch, Gerjo J. V. M.</au><au>Zadpoor, Amir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>e2201891</spage><epage>n/a</epage><pages>e2201891-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36308047</pmid><doi>10.1002/adhm.202201891</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8434-8316</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid><orcidid>https://orcid.org/0000-0002-7341-4445</orcidid><orcidid>https://orcid.org/0000-0003-3234-2112</orcidid><orcidid>https://orcid.org/0000-0003-1852-6409</orcidid><orcidid>https://orcid.org/0000-0002-0424-8172</orcidid><orcidid>https://orcid.org/0000-0002-1084-5766</orcidid><orcidid>https://orcid.org/0000-0002-3744-9093</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-01, Vol.12 (2), p.e2201891-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | 3-D printers 4D bioprinting Alginates Alginates - chemistry Alginic acid biofabrication Bioprinting Bone marrow Cartilage Cell viability Cellular structure Flat surfaces Histology Humans Hyaluronic Acid Hydrogels Inks Mesenchymal Stem Cells Mesenchyme Multilayers Printing, Three-Dimensional Radius of curvature Scaffolds shape‐change smart bioinks Stromal cells Swelling Three dimensional printing Time dependence Tissue Engineering Tissue Scaffolds - chemistry Tyramine |
title | Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swelling%E2%80%90Dependent%20Shape%E2%80%90Based%20Transformation%20of%20a%20Human%20Mesenchymal%20Stromal%20Cells%E2%80%90Laden%204D%20Bioprinted%20Construct%20for%20Cartilage%20Tissue%20Engineering&rft.jtitle=Advanced%20healthcare%20materials&rft.au=D%C3%ADaz%E2%80%90Payno,%20Pedro%20J.&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=e2201891&rft.epage=n/a&rft.pages=e2201891-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202201891&rft_dat=%3Cproquest_pubme%3E2765223216%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765223216&rft_id=info:pmid/36308047&rfr_iscdi=true |