Loading…

Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering

3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofa...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2023-01, Vol.12 (2), p.e2201891-n/a
Main Authors: Díaz‐Payno, Pedro J., Kalogeropoulou, Maria, Muntz, Iain, Kingma, Esther, Kops, Nicole, D'Este, Matteo, Koenderink, Gijsje H., Fratila‐Apachitei, Lidy E., Osch, Gerjo J. V. M., Zadpoor, Amir A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03
cites cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03
container_end_page n/a
container_issue 2
container_start_page e2201891
container_title Advanced healthcare materials
container_volume 12
creator Díaz‐Payno, Pedro J.
Kalogeropoulou, Maria
Muntz, Iain
Kingma, Esther
Kops, Nicole
D'Este, Matteo
Koenderink, Gijsje H.
Fratila‐Apachitei, Lidy E.
Osch, Gerjo J. V. M.
Zadpoor, Amir A.
description 3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.
doi_str_mv 10.1002/adhm.202201891
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765223216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</originalsourceid><addsrcrecordid>eNqFkcuO0zAUhiMEYkbDbFkiS2zYtPgWJ1mhmXSgSB2xaFlbJ8lJ6lFiFzuZUXc8AjvejyfBVYdy2eDNsezPn87xnyQvGZ0zSvlbaLbDnFPOKcsL9iQ556zgM67S4ulpL-lZchnCHY1LpUzl7HlyJpSgOZXZefJ9_YB9b2z34-u3Be7QNmhHst7CDuPJNQRsyMaDDa3zA4zGWeJaAmQ5DWDJLQa09XY_QE_Wo3eHWkZfiG9XEFVELsi1cTtv7BhNpbNh9FM9kqgjJfjR9NAh2ZgQJiQ3tjMWMcLdi-RZC33Ay8d6kXx-f7Mpl7PVpw8fy6vVrJaqYLOspQ2nyFpEUVUyyzgC1CxvK4pFgSKtc5HyBlVW0SZPVSZqqBgHDkxKCVRcJO-O3t1UDdjUcXoPvY4ND-D32oHRf99Ys9Wdu9eMSRWFRTS8eTR492XCMOrBhDp-Alh0U9A8E1RwmqdZRF__g965yds4X6RUyrngTEVqfqRq70Lw2J66YVQfcteH3PUp9_jg1Z8znPBfKUegOAIPpsf9f3T6arG8_S3_Cd-Ov34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765223216</pqid></control><display><type>article</type><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</creator><creatorcontrib>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</creatorcontrib><description>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202201891</identifier><identifier>PMID: 36308047</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 4D bioprinting ; Alginates ; Alginates - chemistry ; Alginic acid ; biofabrication ; Bioprinting ; Bone marrow ; Cartilage ; Cell viability ; Cellular structure ; Flat surfaces ; Histology ; Humans ; Hyaluronic Acid ; Hydrogels ; Inks ; Mesenchymal Stem Cells ; Mesenchyme ; Multilayers ; Printing, Three-Dimensional ; Radius of curvature ; Scaffolds ; shape‐change ; smart bioinks ; Stromal cells ; Swelling ; Three dimensional printing ; Time dependence ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Tyramine</subject><ispartof>Advanced healthcare materials, 2023-01, Vol.12 (2), p.e2201891-n/a</ispartof><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</citedby><cites>FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</cites><orcidid>0000-0002-8434-8316 ; 0000-0002-7823-8807 ; 0000-0002-7341-4445 ; 0000-0003-3234-2112 ; 0000-0003-1852-6409 ; 0000-0002-0424-8172 ; 0000-0002-1084-5766 ; 0000-0002-3744-9093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36308047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz‐Payno, Pedro J.</creatorcontrib><creatorcontrib>Kalogeropoulou, Maria</creatorcontrib><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Kingma, Esther</creatorcontrib><creatorcontrib>Kops, Nicole</creatorcontrib><creatorcontrib>D'Este, Matteo</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Osch, Gerjo J. V. M.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</description><subject>3-D printers</subject><subject>4D bioprinting</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Alginic acid</subject><subject>biofabrication</subject><subject>Bioprinting</subject><subject>Bone marrow</subject><subject>Cartilage</subject><subject>Cell viability</subject><subject>Cellular structure</subject><subject>Flat surfaces</subject><subject>Histology</subject><subject>Humans</subject><subject>Hyaluronic Acid</subject><subject>Hydrogels</subject><subject>Inks</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchyme</subject><subject>Multilayers</subject><subject>Printing, Three-Dimensional</subject><subject>Radius of curvature</subject><subject>Scaffolds</subject><subject>shape‐change</subject><subject>smart bioinks</subject><subject>Stromal cells</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Time dependence</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tyramine</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcuO0zAUhiMEYkbDbFkiS2zYtPgWJ1mhmXSgSB2xaFlbJ8lJ6lFiFzuZUXc8AjvejyfBVYdy2eDNsezPn87xnyQvGZ0zSvlbaLbDnFPOKcsL9iQ556zgM67S4ulpL-lZchnCHY1LpUzl7HlyJpSgOZXZefJ9_YB9b2z34-u3Be7QNmhHst7CDuPJNQRsyMaDDa3zA4zGWeJaAmQ5DWDJLQa09XY_QE_Wo3eHWkZfiG9XEFVELsi1cTtv7BhNpbNh9FM9kqgjJfjR9NAh2ZgQJiQ3tjMWMcLdi-RZC33Ay8d6kXx-f7Mpl7PVpw8fy6vVrJaqYLOspQ2nyFpEUVUyyzgC1CxvK4pFgSKtc5HyBlVW0SZPVSZqqBgHDkxKCVRcJO-O3t1UDdjUcXoPvY4ND-D32oHRf99Ys9Wdu9eMSRWFRTS8eTR492XCMOrBhDp-Alh0U9A8E1RwmqdZRF__g965yds4X6RUyrngTEVqfqRq70Lw2J66YVQfcteH3PUp9_jg1Z8znPBfKUegOAIPpsf9f3T6arG8_S3_Cd-Ov34</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Díaz‐Payno, Pedro J.</creator><creator>Kalogeropoulou, Maria</creator><creator>Muntz, Iain</creator><creator>Kingma, Esther</creator><creator>Kops, Nicole</creator><creator>D'Este, Matteo</creator><creator>Koenderink, Gijsje H.</creator><creator>Fratila‐Apachitei, Lidy E.</creator><creator>Osch, Gerjo J. V. M.</creator><creator>Zadpoor, Amir A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8434-8316</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid><orcidid>https://orcid.org/0000-0002-7341-4445</orcidid><orcidid>https://orcid.org/0000-0003-3234-2112</orcidid><orcidid>https://orcid.org/0000-0003-1852-6409</orcidid><orcidid>https://orcid.org/0000-0002-0424-8172</orcidid><orcidid>https://orcid.org/0000-0002-1084-5766</orcidid><orcidid>https://orcid.org/0000-0002-3744-9093</orcidid></search><sort><creationdate>20230101</creationdate><title>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</title><author>Díaz‐Payno, Pedro J. ; Kalogeropoulou, Maria ; Muntz, Iain ; Kingma, Esther ; Kops, Nicole ; D'Este, Matteo ; Koenderink, Gijsje H. ; Fratila‐Apachitei, Lidy E. ; Osch, Gerjo J. V. M. ; Zadpoor, Amir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>4D bioprinting</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Alginic acid</topic><topic>biofabrication</topic><topic>Bioprinting</topic><topic>Bone marrow</topic><topic>Cartilage</topic><topic>Cell viability</topic><topic>Cellular structure</topic><topic>Flat surfaces</topic><topic>Histology</topic><topic>Humans</topic><topic>Hyaluronic Acid</topic><topic>Hydrogels</topic><topic>Inks</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchyme</topic><topic>Multilayers</topic><topic>Printing, Three-Dimensional</topic><topic>Radius of curvature</topic><topic>Scaffolds</topic><topic>shape‐change</topic><topic>smart bioinks</topic><topic>Stromal cells</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Time dependence</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tyramine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz‐Payno, Pedro J.</creatorcontrib><creatorcontrib>Kalogeropoulou, Maria</creatorcontrib><creatorcontrib>Muntz, Iain</creatorcontrib><creatorcontrib>Kingma, Esther</creatorcontrib><creatorcontrib>Kops, Nicole</creatorcontrib><creatorcontrib>D'Este, Matteo</creatorcontrib><creatorcontrib>Koenderink, Gijsje H.</creatorcontrib><creatorcontrib>Fratila‐Apachitei, Lidy E.</creatorcontrib><creatorcontrib>Osch, Gerjo J. V. M.</creatorcontrib><creatorcontrib>Zadpoor, Amir A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz‐Payno, Pedro J.</au><au>Kalogeropoulou, Maria</au><au>Muntz, Iain</au><au>Kingma, Esther</au><au>Kops, Nicole</au><au>D'Este, Matteo</au><au>Koenderink, Gijsje H.</au><au>Fratila‐Apachitei, Lidy E.</au><au>Osch, Gerjo J. V. M.</au><au>Zadpoor, Amir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>e2201891</spage><epage>n/a</epage><pages>e2201891-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of shape‐changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi‐material system made from two hydrogel‐based materials: hyaluronan and alginate. Two ink formulations are used: tyramine‐functionalized hyaluronan (HAT, high‐swelling) and alginate with HAT (AHAT, low‐swelling). Both inks have similar elastic, shear‐thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape‐change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self‐bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage‐like matrix production is visible on histology. A proof‐of‐concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated. 3D bioprinting poses serious limitations in the fabrication of multilayered curved constructs, motivating the development of 4D bioprinting as the next generation of biofabrication technologies. 4D bioprinting, combining 3D bioprinting with time‐dependent stimuli‐induced transformation, enables the fabrication of self‐bending constructs. Here, a 4D smart multi‐material system for curved cartilage engineering is reported as a proof‐of‐concept.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36308047</pmid><doi>10.1002/adhm.202201891</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8434-8316</orcidid><orcidid>https://orcid.org/0000-0002-7823-8807</orcidid><orcidid>https://orcid.org/0000-0002-7341-4445</orcidid><orcidid>https://orcid.org/0000-0003-3234-2112</orcidid><orcidid>https://orcid.org/0000-0003-1852-6409</orcidid><orcidid>https://orcid.org/0000-0002-0424-8172</orcidid><orcidid>https://orcid.org/0000-0002-1084-5766</orcidid><orcidid>https://orcid.org/0000-0002-3744-9093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-01, Vol.12 (2), p.e2201891-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468569
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects 3-D printers
4D bioprinting
Alginates
Alginates - chemistry
Alginic acid
biofabrication
Bioprinting
Bone marrow
Cartilage
Cell viability
Cellular structure
Flat surfaces
Histology
Humans
Hyaluronic Acid
Hydrogels
Inks
Mesenchymal Stem Cells
Mesenchyme
Multilayers
Printing, Three-Dimensional
Radius of curvature
Scaffolds
shape‐change
smart bioinks
Stromal cells
Swelling
Three dimensional printing
Time dependence
Tissue Engineering
Tissue Scaffolds - chemistry
Tyramine
title Swelling‐Dependent Shape‐Based Transformation of a Human Mesenchymal Stromal Cells‐Laden 4D Bioprinted Construct for Cartilage Tissue Engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swelling%E2%80%90Dependent%20Shape%E2%80%90Based%20Transformation%20of%20a%20Human%20Mesenchymal%20Stromal%20Cells%E2%80%90Laden%204D%20Bioprinted%20Construct%20for%20Cartilage%20Tissue%20Engineering&rft.jtitle=Advanced%20healthcare%20materials&rft.au=D%C3%ADaz%E2%80%90Payno,%20Pedro%20J.&rft.date=2023-01-01&rft.volume=12&rft.issue=2&rft.spage=e2201891&rft.epage=n/a&rft.pages=e2201891-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202201891&rft_dat=%3Cproquest_pubme%3E2765223216%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4691-7f0d20e1fee3bb4772eaac18fb0e99e35c8352de67b0d85673cab12a2a1444a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765223216&rft_id=info:pmid/36308047&rfr_iscdi=true