Loading…
Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration
The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function...
Saved in:
Published in: | Advanced healthcare materials 2023-05, Vol.12 (12), p.e2202658-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | e2202658 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Tang, Yu Xu, Zonghan Tang, Jincheng Xu, Yichang Li, Ziang Wang, Wenbo Wu, Liang Xi, Kun Gu, Yong Chen, Liang |
description | The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.
A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. |
doi_str_mv | 10.1002/adhm.202202658 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811051523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</originalsourceid><addsrcrecordid>eNqFkc1O3DAQxy3UChDl2iOKxKWXXTKOncSnarXdAhIU1I-z5U0mu0aJvdjJVtz6CDxjn6RDly6UC5alGXt-8_d4hrH3kI4hTfmJqZfdmKecdi7LHbbPQfER-erN1hfpHjuM8SallUvIS9hle1meSy652me3k1AtbY9VPwT8_et-5hbWIQask1lLt8HHlXXOukUyNbEyNSZfcTG0pseYfKOQaZNLWwWPbm2Ddx26Pul9ch1853tMvmBY_01Bh8H01rt37G1j2oiHj_aA_fg8-z49G11cnZ5PJxejSuSqHGUlAoiirCFTdC6bSjYqE3NRY2GkKiSYeZNxI6AxhRFCYsEVgpwjlEJR1gH7uNFdDfMO64oKC6bVq2A7E-60N1b_H3F2qRd-renZXAFIUvjwqBD87YCx152NFbatceiHqHmRF1BwMoQev0Bv_BCoOUSVAKkEyTOixhuK-hVjwGZbDaT6YaL6YaJ6O1FKOHr-hy3-b34EqA3w07Z494qcnnw6u3wS_wNQprAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811051523</pqid></control><display><type>article</type><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</creator><creatorcontrib>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</creatorcontrib><description>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.
A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202202658</identifier><identifier>PMID: 36652529</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Inflammatory Agents - therapeutic use ; Apoptosis ; Biomaterials ; Biomedical materials ; Blood vessels ; Brain injury ; Central nervous system ; electrospinning ; Fiber composites ; Germination ; Hydrogels ; Hydrogels - pharmacology ; Hydrogels - therapeutic use ; Hydrophilicity ; Immune response ; Immune system ; Inflammation ; Inflammatory response ; Injury prevention ; macrophage polarization ; Macrophages ; nerve regeneration ; Nerve Regeneration - physiology ; Nerves ; Neural stem cells ; Neural Stem Cells - transplantation ; Neurotrophic factors ; Rats ; Receptor mechanisms ; Recovery ; Regeneration ; Spinal Cord ; Spinal cord injuries ; Spinal Cord Injuries - therapy ; spinal cord injury immune microenvironments ; Stem cells</subject><ispartof>Advanced healthcare materials, 2023-05, Vol.12 (12), p.e2202658-n/a</ispartof><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</citedby><cites>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</cites><orcidid>0000-0003-1985-7031 ; 0000-0002-0458-9866 ; 0000-0001-8016-7596 ; 0000-0003-1110-369X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36652529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yu</creatorcontrib><creatorcontrib>Xu, Zonghan</creatorcontrib><creatorcontrib>Tang, Jincheng</creatorcontrib><creatorcontrib>Xu, Yichang</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Gu, Yong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.
A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Brain injury</subject><subject>Central nervous system</subject><subject>electrospinning</subject><subject>Fiber composites</subject><subject>Germination</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrogels - therapeutic use</subject><subject>Hydrophilicity</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Injury prevention</subject><subject>macrophage polarization</subject><subject>Macrophages</subject><subject>nerve regeneration</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerves</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - transplantation</subject><subject>Neurotrophic factors</subject><subject>Rats</subject><subject>Receptor mechanisms</subject><subject>Recovery</subject><subject>Regeneration</subject><subject>Spinal Cord</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury immune microenvironments</subject><subject>Stem cells</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O3DAQxy3UChDl2iOKxKWXXTKOncSnarXdAhIU1I-z5U0mu0aJvdjJVtz6CDxjn6RDly6UC5alGXt-8_d4hrH3kI4hTfmJqZfdmKecdi7LHbbPQfER-erN1hfpHjuM8SallUvIS9hle1meSy652me3k1AtbY9VPwT8_et-5hbWIQask1lLt8HHlXXOukUyNbEyNSZfcTG0pseYfKOQaZNLWwWPbm2Ddx26Pul9ch1853tMvmBY_01Bh8H01rt37G1j2oiHj_aA_fg8-z49G11cnZ5PJxejSuSqHGUlAoiirCFTdC6bSjYqE3NRY2GkKiSYeZNxI6AxhRFCYsEVgpwjlEJR1gH7uNFdDfMO64oKC6bVq2A7E-60N1b_H3F2qRd-renZXAFIUvjwqBD87YCx152NFbatceiHqHmRF1BwMoQev0Bv_BCoOUSVAKkEyTOixhuK-hVjwGZbDaT6YaL6YaJ6O1FKOHr-hy3-b34EqA3w07Z494qcnnw6u3wS_wNQprAQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tang, Yu</creator><creator>Xu, Zonghan</creator><creator>Tang, Jincheng</creator><creator>Xu, Yichang</creator><creator>Li, Ziang</creator><creator>Wang, Wenbo</creator><creator>Wu, Liang</creator><creator>Xi, Kun</creator><creator>Gu, Yong</creator><creator>Chen, Liang</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1985-7031</orcidid><orcidid>https://orcid.org/0000-0002-0458-9866</orcidid><orcidid>https://orcid.org/0000-0001-8016-7596</orcidid><orcidid>https://orcid.org/0000-0003-1110-369X</orcidid></search><sort><creationdate>20230501</creationdate><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><author>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Brain injury</topic><topic>Central nervous system</topic><topic>electrospinning</topic><topic>Fiber composites</topic><topic>Germination</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrogels - therapeutic use</topic><topic>Hydrophilicity</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Injury prevention</topic><topic>macrophage polarization</topic><topic>Macrophages</topic><topic>nerve regeneration</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerves</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - transplantation</topic><topic>Neurotrophic factors</topic><topic>Rats</topic><topic>Receptor mechanisms</topic><topic>Recovery</topic><topic>Regeneration</topic><topic>Spinal Cord</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury immune microenvironments</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yu</creatorcontrib><creatorcontrib>Xu, Zonghan</creatorcontrib><creatorcontrib>Tang, Jincheng</creatorcontrib><creatorcontrib>Xu, Yichang</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Gu, Yong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yu</au><au>Xu, Zonghan</au><au>Tang, Jincheng</au><au>Xu, Yichang</au><au>Li, Ziang</au><au>Wang, Wenbo</au><au>Wu, Liang</au><au>Xi, Kun</au><au>Gu, Yong</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>12</issue><spage>e2202658</spage><epage>n/a</epage><pages>e2202658-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.
A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36652529</pmid><doi>10.1002/adhm.202202658</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1985-7031</orcidid><orcidid>https://orcid.org/0000-0002-0458-9866</orcidid><orcidid>https://orcid.org/0000-0001-8016-7596</orcidid><orcidid>https://orcid.org/0000-0003-1110-369X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-05, Vol.12 (12), p.e2202658-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469115 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Anti-Inflammatory Agents - therapeutic use Apoptosis Biomaterials Biomedical materials Blood vessels Brain injury Central nervous system electrospinning Fiber composites Germination Hydrogels Hydrogels - pharmacology Hydrogels - therapeutic use Hydrophilicity Immune response Immune system Inflammation Inflammatory response Injury prevention macrophage polarization Macrophages nerve regeneration Nerve Regeneration - physiology Nerves Neural stem cells Neural Stem Cells - transplantation Neurotrophic factors Rats Receptor mechanisms Recovery Regeneration Spinal Cord Spinal cord injuries Spinal Cord Injuries - therapy spinal cord injury immune microenvironments Stem cells |
title | Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%E2%80%90Engineered%20Electrospinning%20Cascade%20Regulates%20Spinal%20Microenvironment%20to%20Promote%20Nerve%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Tang,%20Yu&rft.date=2023-05-01&rft.volume=12&rft.issue=12&rft.spage=e2202658&rft.epage=n/a&rft.pages=e2202658-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202202658&rft_dat=%3Cproquest_pubme%3E2811051523%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811051523&rft_id=info:pmid/36652529&rfr_iscdi=true |