Loading…

Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration

The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2023-05, Vol.12 (12), p.e2202658-n/a
Main Authors: Tang, Yu, Xu, Zonghan, Tang, Jincheng, Xu, Yichang, Li, Ziang, Wang, Wenbo, Wu, Liang, Xi, Kun, Gu, Yong, Chen, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13
cites cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13
container_end_page n/a
container_issue 12
container_start_page e2202658
container_title Advanced healthcare materials
container_volume 12
creator Tang, Yu
Xu, Zonghan
Tang, Jincheng
Xu, Yichang
Li, Ziang
Wang, Wenbo
Wu, Liang
Xi, Kun
Gu, Yong
Chen, Liang
description The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI. A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.
doi_str_mv 10.1002/adhm.202202658
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811051523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</originalsourceid><addsrcrecordid>eNqFkc1O3DAQxy3UChDl2iOKxKWXXTKOncSnarXdAhIU1I-z5U0mu0aJvdjJVtz6CDxjn6RDly6UC5alGXt-8_d4hrH3kI4hTfmJqZfdmKecdi7LHbbPQfER-erN1hfpHjuM8SallUvIS9hle1meSy652me3k1AtbY9VPwT8_et-5hbWIQask1lLt8HHlXXOukUyNbEyNSZfcTG0pseYfKOQaZNLWwWPbm2Ddx26Pul9ch1853tMvmBY_01Bh8H01rt37G1j2oiHj_aA_fg8-z49G11cnZ5PJxejSuSqHGUlAoiirCFTdC6bSjYqE3NRY2GkKiSYeZNxI6AxhRFCYsEVgpwjlEJR1gH7uNFdDfMO64oKC6bVq2A7E-60N1b_H3F2qRd-renZXAFIUvjwqBD87YCx152NFbatceiHqHmRF1BwMoQev0Bv_BCoOUSVAKkEyTOixhuK-hVjwGZbDaT6YaL6YaJ6O1FKOHr-hy3-b34EqA3w07Z494qcnnw6u3wS_wNQprAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811051523</pqid></control><display><type>article</type><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</creator><creatorcontrib>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</creatorcontrib><description>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI. A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202202658</identifier><identifier>PMID: 36652529</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anti-Inflammatory Agents - therapeutic use ; Apoptosis ; Biomaterials ; Biomedical materials ; Blood vessels ; Brain injury ; Central nervous system ; electrospinning ; Fiber composites ; Germination ; Hydrogels ; Hydrogels - pharmacology ; Hydrogels - therapeutic use ; Hydrophilicity ; Immune response ; Immune system ; Inflammation ; Inflammatory response ; Injury prevention ; macrophage polarization ; Macrophages ; nerve regeneration ; Nerve Regeneration - physiology ; Nerves ; Neural stem cells ; Neural Stem Cells - transplantation ; Neurotrophic factors ; Rats ; Receptor mechanisms ; Recovery ; Regeneration ; Spinal Cord ; Spinal cord injuries ; Spinal Cord Injuries - therapy ; spinal cord injury immune microenvironments ; Stem cells</subject><ispartof>Advanced healthcare materials, 2023-05, Vol.12 (12), p.e2202658-n/a</ispartof><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</citedby><cites>FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</cites><orcidid>0000-0003-1985-7031 ; 0000-0002-0458-9866 ; 0000-0001-8016-7596 ; 0000-0003-1110-369X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36652529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yu</creatorcontrib><creatorcontrib>Xu, Zonghan</creatorcontrib><creatorcontrib>Tang, Jincheng</creatorcontrib><creatorcontrib>Xu, Yichang</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Gu, Yong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI. A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</description><subject>Animals</subject><subject>Anti-Inflammatory Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Brain injury</subject><subject>Central nervous system</subject><subject>electrospinning</subject><subject>Fiber composites</subject><subject>Germination</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrogels - therapeutic use</subject><subject>Hydrophilicity</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Injury prevention</subject><subject>macrophage polarization</subject><subject>Macrophages</subject><subject>nerve regeneration</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerves</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - transplantation</subject><subject>Neurotrophic factors</subject><subject>Rats</subject><subject>Receptor mechanisms</subject><subject>Recovery</subject><subject>Regeneration</subject><subject>Spinal Cord</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - therapy</subject><subject>spinal cord injury immune microenvironments</subject><subject>Stem cells</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O3DAQxy3UChDl2iOKxKWXXTKOncSnarXdAhIU1I-z5U0mu0aJvdjJVtz6CDxjn6RDly6UC5alGXt-8_d4hrH3kI4hTfmJqZfdmKecdi7LHbbPQfER-erN1hfpHjuM8SallUvIS9hle1meSy652me3k1AtbY9VPwT8_et-5hbWIQask1lLt8HHlXXOukUyNbEyNSZfcTG0pseYfKOQaZNLWwWPbm2Ddx26Pul9ch1853tMvmBY_01Bh8H01rt37G1j2oiHj_aA_fg8-z49G11cnZ5PJxejSuSqHGUlAoiirCFTdC6bSjYqE3NRY2GkKiSYeZNxI6AxhRFCYsEVgpwjlEJR1gH7uNFdDfMO64oKC6bVq2A7E-60N1b_H3F2qRd-renZXAFIUvjwqBD87YCx152NFbatceiHqHmRF1BwMoQev0Bv_BCoOUSVAKkEyTOixhuK-hVjwGZbDaT6YaL6YaJ6O1FKOHr-hy3-b34EqA3w07Z494qcnnw6u3wS_wNQprAQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tang, Yu</creator><creator>Xu, Zonghan</creator><creator>Tang, Jincheng</creator><creator>Xu, Yichang</creator><creator>Li, Ziang</creator><creator>Wang, Wenbo</creator><creator>Wu, Liang</creator><creator>Xi, Kun</creator><creator>Gu, Yong</creator><creator>Chen, Liang</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1985-7031</orcidid><orcidid>https://orcid.org/0000-0002-0458-9866</orcidid><orcidid>https://orcid.org/0000-0001-8016-7596</orcidid><orcidid>https://orcid.org/0000-0003-1110-369X</orcidid></search><sort><creationdate>20230501</creationdate><title>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</title><author>Tang, Yu ; Xu, Zonghan ; Tang, Jincheng ; Xu, Yichang ; Li, Ziang ; Wang, Wenbo ; Wu, Liang ; Xi, Kun ; Gu, Yong ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Anti-Inflammatory Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Brain injury</topic><topic>Central nervous system</topic><topic>electrospinning</topic><topic>Fiber composites</topic><topic>Germination</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrogels - therapeutic use</topic><topic>Hydrophilicity</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Injury prevention</topic><topic>macrophage polarization</topic><topic>Macrophages</topic><topic>nerve regeneration</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerves</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - transplantation</topic><topic>Neurotrophic factors</topic><topic>Rats</topic><topic>Receptor mechanisms</topic><topic>Recovery</topic><topic>Regeneration</topic><topic>Spinal Cord</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - therapy</topic><topic>spinal cord injury immune microenvironments</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yu</creatorcontrib><creatorcontrib>Xu, Zonghan</creatorcontrib><creatorcontrib>Tang, Jincheng</creatorcontrib><creatorcontrib>Xu, Yichang</creatorcontrib><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Wu, Liang</creatorcontrib><creatorcontrib>Xi, Kun</creatorcontrib><creatorcontrib>Gu, Yong</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yu</au><au>Xu, Zonghan</au><au>Tang, Jincheng</au><au>Xu, Yichang</au><au>Li, Ziang</au><au>Wang, Wenbo</au><au>Wu, Liang</au><au>Xi, Kun</au><au>Gu, Yong</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>12</issue><spage>e2202658</spage><epage>n/a</epage><pages>e2202658-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel “perfusion” system and electrospinning technology are integrated, and a “concrete” composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti‐inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell‐derived factor‐1α and brain‐derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four‐ and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI. A hydrogel “perfusion” system and electrospinning technology constitute a “concrete” composite support for the repair of nerve injuries. This engineering fiber composite improves the local inflammatory response and promotes nerve regeneration through a hydrophilic programmed cytokine‐delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36652529</pmid><doi>10.1002/adhm.202202658</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1985-7031</orcidid><orcidid>https://orcid.org/0000-0002-0458-9866</orcidid><orcidid>https://orcid.org/0000-0001-8016-7596</orcidid><orcidid>https://orcid.org/0000-0003-1110-369X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-05, Vol.12 (12), p.e2202658-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469115
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Anti-Inflammatory Agents - therapeutic use
Apoptosis
Biomaterials
Biomedical materials
Blood vessels
Brain injury
Central nervous system
electrospinning
Fiber composites
Germination
Hydrogels
Hydrogels - pharmacology
Hydrogels - therapeutic use
Hydrophilicity
Immune response
Immune system
Inflammation
Inflammatory response
Injury prevention
macrophage polarization
Macrophages
nerve regeneration
Nerve Regeneration - physiology
Nerves
Neural stem cells
Neural Stem Cells - transplantation
Neurotrophic factors
Rats
Receptor mechanisms
Recovery
Regeneration
Spinal Cord
Spinal cord injuries
Spinal Cord Injuries - therapy
spinal cord injury immune microenvironments
Stem cells
title Architecture‐Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%E2%80%90Engineered%20Electrospinning%20Cascade%20Regulates%20Spinal%20Microenvironment%20to%20Promote%20Nerve%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Tang,%20Yu&rft.date=2023-05-01&rft.volume=12&rft.issue=12&rft.spage=e2202658&rft.epage=n/a&rft.pages=e2202658-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202202658&rft_dat=%3Cproquest_pubme%3E2811051523%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4698-38e11478d1396988fc5f934b4de7a59751abf32a41fa7a445e729e15be1849d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811051523&rft_id=info:pmid/36652529&rfr_iscdi=true