Loading…
Thin-film implants for bioelectronic medicine
This article is based on the MRS Mid-Career Researcher Award “for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine” presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Me...
Saved in:
Published in: | MRS bulletin 2024, Vol.49 (10), p.1045-1058 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article is based on the MRS Mid-Career Researcher Award “for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine” presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.
Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed.
Graphical abstract |
---|---|
ISSN: | 0883-7694 1938-1425 |
DOI: | 10.1557/s43577-024-00786-7 |