Loading…
Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification
Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to i...
Saved in:
Published in: | Cancers 2024-09, Vol.16 (19), p.3321 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-ebb5e58eac80ac92a5e55c418722d314ed6563900157acdb1ca2becbb52105af3 |
container_end_page | |
container_issue | 19 |
container_start_page | 3321 |
container_title | Cancers |
container_volume | 16 |
creator | Kalkan, Muruvvet Guzel, Mehmet S Ekinci, Fatih Akcapinar Sezer, Ebru Asuroglu, Tunc |
description | Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to identify lung cancer in its early stages using CT scan images.
Pre-trained convolutional neural networks (CNNs), including MobileNetV2, ResNet152V2, InceptionResNetV2, Xception, VGG-19, and InceptionV3, were used for lung cancer detection. Once the disease was identified, the tumor's region was segmented using models such as UNet, SegNet, and InceptionUNet.
The InceptionResNetV2 model achieved the highest detection accuracy of 98.5%, while UNet produced the best segmentation results, with a Jaccard index of 95.3%.
The study demonstrates the effectiveness of deep learning models, particularly InceptionResNetV2 and UNet, in both detecting and segmenting lung cancer, showing significant potential for aiding early diagnosis and treatment. Future work could focus on refining these models and exploring their application in other medical domains. |
doi_str_mv | 10.3390/cancers16193321 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11475068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117076932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-ebb5e58eac80ac92a5e55c418722d314ed6563900157acdb1ca2becbb52105af3</originalsourceid><addsrcrecordid>eNpdkc1LHTEUxUOpVLGuuysBN908zcckebMqMm1VeMVFLXQX7mTuPCMzyZjMCP73jZ-ogZCE87uHe3MI-cLZkZQ1O3YQHKbMNa-lFPwD2RPMiJXWdfXx1X2XHOR8zcqSkhttPpFdWVesLnuP_GviOEGC2d8iPQkw3GWfaezpD8SJbhBS8GFLf-N8FbsiBNpc0vMRtphpHxPdLEVtHhqhfyZ0vveumMXwmez0MGQ8eDr3yd9fPy-bs9Xm4vS8OdmsnGR6XmHbKlRrBLdm4GoB5aVcxddGiE7yCjutdBmWcWXAdS13IFp0pUpwpqCX--T7o--0tCN2DsOcYLBT8iOkOxvB27dK8Fd2G28t55VRTK-Lw7cnhxRvFsyzHX12OAwQMC7ZSs4NM7qWoqCH79DruKTyaw-UVqaqalWo40fKpZhzwv6lG87sfXL2XXKl4uvrIV7455zkf5zUlb0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116574495</pqid></control><display><type>article</type><title>Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Kalkan, Muruvvet ; Guzel, Mehmet S ; Ekinci, Fatih ; Akcapinar Sezer, Ebru ; Asuroglu, Tunc</creator><creatorcontrib>Kalkan, Muruvvet ; Guzel, Mehmet S ; Ekinci, Fatih ; Akcapinar Sezer, Ebru ; Asuroglu, Tunc</creatorcontrib><description>Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to identify lung cancer in its early stages using CT scan images.
Pre-trained convolutional neural networks (CNNs), including MobileNetV2, ResNet152V2, InceptionResNetV2, Xception, VGG-19, and InceptionV3, were used for lung cancer detection. Once the disease was identified, the tumor's region was segmented using models such as UNet, SegNet, and InceptionUNet.
The InceptionResNetV2 model achieved the highest detection accuracy of 98.5%, while UNet produced the best segmentation results, with a Jaccard index of 95.3%.
The study demonstrates the effectiveness of deep learning models, particularly InceptionResNetV2 and UNet, in both detecting and segmenting lung cancer, showing significant potential for aiding early diagnosis and treatment. Future work could focus on refining these models and exploring their application in other medical domains.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers16193321</identifier><identifier>PMID: 39409940</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Classification ; Comparative analysis ; Computed tomography ; Datasets ; Deep learning ; Disease ; Experiments ; Literature reviews ; Localization ; Lung cancer ; Lung diseases ; Medical imaging ; Medical research ; Neural networks ; Patients ; Segmentation ; Tomography ; Tumors</subject><ispartof>Cancers, 2024-09, Vol.16 (19), p.3321</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-ebb5e58eac80ac92a5e55c418722d314ed6563900157acdb1ca2becbb52105af3</cites><orcidid>0000-0001-8056-1905 ; 0000-0002-3408-0083 ; 0000-0002-1011-1105 ; 0000-0003-4153-0764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116574495/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116574495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39409940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalkan, Muruvvet</creatorcontrib><creatorcontrib>Guzel, Mehmet S</creatorcontrib><creatorcontrib>Ekinci, Fatih</creatorcontrib><creatorcontrib>Akcapinar Sezer, Ebru</creatorcontrib><creatorcontrib>Asuroglu, Tunc</creatorcontrib><title>Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to identify lung cancer in its early stages using CT scan images.
Pre-trained convolutional neural networks (CNNs), including MobileNetV2, ResNet152V2, InceptionResNetV2, Xception, VGG-19, and InceptionV3, were used for lung cancer detection. Once the disease was identified, the tumor's region was segmented using models such as UNet, SegNet, and InceptionUNet.
The InceptionResNetV2 model achieved the highest detection accuracy of 98.5%, while UNet produced the best segmentation results, with a Jaccard index of 95.3%.
The study demonstrates the effectiveness of deep learning models, particularly InceptionResNetV2 and UNet, in both detecting and segmenting lung cancer, showing significant potential for aiding early diagnosis and treatment. Future work could focus on refining these models and exploring their application in other medical domains.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Experiments</subject><subject>Literature reviews</subject><subject>Localization</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Segmentation</subject><subject>Tomography</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1LHTEUxUOpVLGuuysBN908zcckebMqMm1VeMVFLXQX7mTuPCMzyZjMCP73jZ-ogZCE87uHe3MI-cLZkZQ1O3YQHKbMNa-lFPwD2RPMiJXWdfXx1X2XHOR8zcqSkhttPpFdWVesLnuP_GviOEGC2d8iPQkw3GWfaezpD8SJbhBS8GFLf-N8FbsiBNpc0vMRtphpHxPdLEVtHhqhfyZ0vveumMXwmez0MGQ8eDr3yd9fPy-bs9Xm4vS8OdmsnGR6XmHbKlRrBLdm4GoB5aVcxddGiE7yCjutdBmWcWXAdS13IFp0pUpwpqCX--T7o--0tCN2DsOcYLBT8iOkOxvB27dK8Fd2G28t55VRTK-Lw7cnhxRvFsyzHX12OAwQMC7ZSs4NM7qWoqCH79DruKTyaw-UVqaqalWo40fKpZhzwv6lG87sfXL2XXKl4uvrIV7455zkf5zUlb0</recordid><startdate>20240928</startdate><enddate>20240928</enddate><creator>Kalkan, Muruvvet</creator><creator>Guzel, Mehmet S</creator><creator>Ekinci, Fatih</creator><creator>Akcapinar Sezer, Ebru</creator><creator>Asuroglu, Tunc</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8056-1905</orcidid><orcidid>https://orcid.org/0000-0002-3408-0083</orcidid><orcidid>https://orcid.org/0000-0002-1011-1105</orcidid><orcidid>https://orcid.org/0000-0003-4153-0764</orcidid></search><sort><creationdate>20240928</creationdate><title>Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification</title><author>Kalkan, Muruvvet ; Guzel, Mehmet S ; Ekinci, Fatih ; Akcapinar Sezer, Ebru ; Asuroglu, Tunc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-ebb5e58eac80ac92a5e55c418722d314ed6563900157acdb1ca2becbb52105af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Experiments</topic><topic>Literature reviews</topic><topic>Localization</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Segmentation</topic><topic>Tomography</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalkan, Muruvvet</creatorcontrib><creatorcontrib>Guzel, Mehmet S</creatorcontrib><creatorcontrib>Ekinci, Fatih</creatorcontrib><creatorcontrib>Akcapinar Sezer, Ebru</creatorcontrib><creatorcontrib>Asuroglu, Tunc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalkan, Muruvvet</au><au>Guzel, Mehmet S</au><au>Ekinci, Fatih</au><au>Akcapinar Sezer, Ebru</au><au>Asuroglu, Tunc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2024-09-28</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>3321</spage><pages>3321-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Lung cancer is the leading cause of cancer-related deaths worldwide, ranking first in men and second in women. Due to its aggressive nature, early detection and accurate localization of tumors are crucial for improving patient outcomes. This study aims to apply advanced deep learning techniques to identify lung cancer in its early stages using CT scan images.
Pre-trained convolutional neural networks (CNNs), including MobileNetV2, ResNet152V2, InceptionResNetV2, Xception, VGG-19, and InceptionV3, were used for lung cancer detection. Once the disease was identified, the tumor's region was segmented using models such as UNet, SegNet, and InceptionUNet.
The InceptionResNetV2 model achieved the highest detection accuracy of 98.5%, while UNet produced the best segmentation results, with a Jaccard index of 95.3%.
The study demonstrates the effectiveness of deep learning models, particularly InceptionResNetV2 and UNet, in both detecting and segmenting lung cancer, showing significant potential for aiding early diagnosis and treatment. Future work could focus on refining these models and exploring their application in other medical domains.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39409940</pmid><doi>10.3390/cancers16193321</doi><orcidid>https://orcid.org/0000-0001-8056-1905</orcidid><orcidid>https://orcid.org/0000-0002-3408-0083</orcidid><orcidid>https://orcid.org/0000-0002-1011-1105</orcidid><orcidid>https://orcid.org/0000-0003-4153-0764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2024-09, Vol.16 (19), p.3321 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11475068 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Accuracy Algorithms Classification Comparative analysis Computed tomography Datasets Deep learning Disease Experiments Literature reviews Localization Lung cancer Lung diseases Medical imaging Medical research Neural networks Patients Segmentation Tomography Tumors |
title | Comparative Analysis of Deep Learning Methods on CT Images for Lung Cancer Specification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Deep%20Learning%20Methods%20on%20CT%20Images%20for%20Lung%20Cancer%20Specification&rft.jtitle=Cancers&rft.au=Kalkan,%20Muruvvet&rft.date=2024-09-28&rft.volume=16&rft.issue=19&rft.spage=3321&rft.pages=3321-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers16193321&rft_dat=%3Cproquest_pubme%3E3117076932%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-ebb5e58eac80ac92a5e55c418722d314ed6563900157acdb1ca2becbb52105af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116574495&rft_id=info:pmid/39409940&rfr_iscdi=true |