Loading…
Synthesis and Redox Activity of Polyenaminones for Sustainable Energy Storage Applications
In the search for novel polymeric molecules that could be used as electroactive materials, seven novel polyenaminones were prepared in high yields by the transaminative polymerization of resorcinol-derived bis-enaminones with - and -phenylenediamine and with 2,5-diaminohydroquinone. The obtained pol...
Saved in:
Published in: | Polymers 2024-09, Vol.16 (19), p.2700 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the search for novel polymeric molecules that could be used as electroactive materials, seven novel polyenaminones were prepared in high yields by the transaminative polymerization of resorcinol-derived bis-enaminones with
- and
-phenylenediamine and with 2,5-diaminohydroquinone. The obtained polymers show very low solubility in organic solvents and absorb UV light and visible light at wavelengths below 500 nm. All the obtained polymeric products were tested for redox activity in a Li battery setup. The 2,5-diaminohydroquinone-derived compound showed the best redox activity, with a maximum capacity of 86 mAh/g and relatively good capacity retention, thus confirming the hydroquinone group as the primary redox-active group. Other potential redox-active groups, such as resorcinol and conjugated carbonyls, showed limited activity, while variations in the phenylene groups and the substitution of phenolic groups in the resorcinol residue did not impact the electrochemical activity of the polymers. Their electrochemical properties, together with their previously established chemical recyclability, make polyenaminones promising scaffolds for the development of materials for sustainable energy storage applications. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16192700 |