Loading…

Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow

Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenes...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-10, Vol.10 (19), p.e38258, Article e38258
Main Authors: Feng, Xiaomei, Chen, Zhao, Cheng, Wenjun, Liu, Changgeng, Liu, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenesis and an effective therapeutic target remain lacking in acute glaucoma. In the present study, we explored the potential molecular mechanisms underlying TM cell death following oxidative damage and AOH. The use of NAC/VX-765 as a potential pharmaceutical intervention for reducing intraocular pressure (IOP) was discussed. The levels of NLRP3 and caspase-1 were compared between normal and glaucomatous TM samples. An in vitro oxidative damage model and an AOH rat model were used to investigate the potential molecular mechanism behind TM cell death. The ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to counteract TM damage. Elevated levels of NLRP3 and caspase-1 were observed in patients with acute glaucoma. H2O2 exposure decreased the viability of human trabecular meshwork (HTM) cells and increased intracellular ROS levels. Both Gene and protein expressions of NLRP3, caspase-1, GSDMD-N, and IL-1β were notably upregulated in H2O2-induced HTM cells and the rodent AOH model. Both NAC and VX-765 demonstrated protective effects against TM injury by inhibiting pyroptosis. The IOP-lowering effects of NAC and VX-765 persisted for 7 days. Our findings indicate that the classical pyroptosis pathway, NLRP3/caspase-1/IL-1β, plays a key role in acute glaucomatous TM injury. Targeting pyroptosis provides novel therapeutic avenues for treating AOH-induced irreversible TM injury. This provides not only a promising therapeutic target for glaucoma but also introduces a new approach to intervention.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e38258