Loading…
The influence of vertebrate scavengers on leakage of nutrients from carcasses
The decomposition of carcasses by scavengers and microbial decomposers is an important component of the biochemical cycle that can strongly alter the chemical composition of soils locally. Different scavenger guilds are assumed to have a different influence on the chemical elements that leak into th...
Saved in:
Published in: | Oecologia 2024-10, Vol.206 (1-2), p.21-35 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decomposition of carcasses by scavengers and microbial decomposers is an important component of the biochemical cycle that can strongly alter the chemical composition of soils locally. Different scavenger guilds are assumed to have a different influence on the chemical elements that leak into the soil, although this assumption has not been empirically tested. Here, we experimentally determine how different guilds of vertebrate scavengers influence local nutrient dynamics. We performed a field experiment in which we systematically excluded different subsets of vertebrate scavengers from decomposing carcasses of fallow deer (
Dama dama
), and compared elemental concentrations in the soil beneath and in the vegetation next to the carcasses over time throughout the decomposition process. We used four exclusion treatments: excluding (1) no scavengers, thus allowing them all; (2) wild boar (
Sus scrofa
); (3) all mammals; and (4) all mammals and birds. We found that fluxes of several elements into the soil showed distinct peaks when all vertebrates were excluded. Especially, trace elements (Cu and Zn) seemed to be influenced by carcass decomposition. However, we found no differences in fluxes between partial exclusion treatments. Thus, vertebrate scavengers indeed reduce leakage of elements from carcasses into the soil, hence influencing local biochemical cycles, but did so independent of which vertebrate scavenger guild had access. Our results suggest that carcass-derived elements are dispersed over larger areas rather than locally leak into the soil when vertebrate scavengers dominate the decomposition process. |
---|---|
ISSN: | 0029-8549 1432-1939 1432-1939 |
DOI: | 10.1007/s00442-024-05608-w |