Loading…
Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data
Due to the continued increase in land use changes and changing climatic patterns in the Lake Victoria basin, understanding the impacts of these changes on the water quality of Lake Victoria is imperative for safeguarding the integrity of the freshwater ecosystem. Thus, we analyzed spatial and tempor...
Saved in:
Published in: | Environmental monitoring and assessment 2024-11, Vol.196 (11), p.1104-1104, Article 1104 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-dfca3b8f940997cec8ebebec94e0ea881b600f65c59f38b96e3315d35c4b10ad3 |
container_end_page | 1104 |
container_issue | 11 |
container_start_page | 1104 |
container_title | Environmental monitoring and assessment |
container_volume | 196 |
creator | Nakkazi, Maria Theresa Nkwasa, Albert Martínez, Analy Baltodano van Griensven, Ann |
description | Due to the continued increase in land use changes and changing climatic patterns in the Lake Victoria basin, understanding the impacts of these changes on the water quality of Lake Victoria is imperative for safeguarding the integrity of the freshwater ecosystem. Thus, we analyzed spatial and temporal patterns of land cover, precipitation, and water quality changes in the Lake Victoria basin between 2000 and 2022 using global satellite products. Focusing on chlorophyll-a (Chl-a) and turbidity (TUR) in Lake Victoria, we used statistical metrics (correlation coefficient, trend analysis, change budget, and intensity analysis) to understand the relationship between land use and precipitation changes in the basin with changes in Chl-a and TUR at two major pollution hotspots on the lake, i.e., Winam Gulf and Inner Murchison Bay (IMB). Results show that the Chl-a and TUR concentrations in the Winam gulf increase with increases in precipitation. Through increases in precipitation, the erosion risks are increased and transport of nutrients from land to the lake system, promoting algal growth and turbidity. In the IMB, Chl-a and TUR concentrations decrease with an increase in precipitation, possibly due to dilution, but peak during moderate rainfall. Interestingly, changes in land use and land cover (LULC) at 5-year intervals showed no substantial correlation with water quality changes at selected hotspots even though a broader LULC change analysis over the past two decades indicated a notable 300% increase in built-up areas across the Lake Victoria basin. These findings underscore the dominant influence of precipitation changes over LULC changes on the water quality of Lake Victoria for the selected hotspot areas. |
doi_str_mv | 10.1007/s10661-024-13261-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153857585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-dfca3b8f940997cec8ebebec94e0ea881b600f65c59f38b96e3315d35c4b10ad3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EotvCF-CALHHhEvCfOLFPCFVQkFbqpeVqOc5k123W3rWdon57HFIW6AEhH8bSPP_eeB5Cryh5Rwlp3ydKmoZWhNUV5azc2BO0oqLlFVNCPUUrQpu2anijTtBpSjeEENXW6jk64aoWXLRshQ5r52-d3-DR-B5PCfBc9xGs27tssgse263xG0g4B_zdZIj4MJnR5ftjw3m8NreAvzmbQ3SmcGYkmJi3OHQJ4t1C6k02L9CzwYwJXj7UM3T9-dPV-ZdqfXnx9fzjurJcqlz1gzW8k4OqiVKtBSuhK8eqGggYKWnXEDI0wgo1cNmpBjinoufC1h0lpudn6MPC3U_dDnoLPkcz6n10OxPvdTBO_93xbqs34U5TKihtqSyEtw-EGA4TpKx3LlkYy6ogTEkXPy5FK6T4DykjZV6mWJG-eSS9CVP0ZRWLShElZm-2qGwMKUUYjoNTouf09ZK-Lunrn-nrGf36zy8fn_yKuwj4IkilVaKLv73_gf0B_Ia8ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120690958</pqid></control><display><type>article</type><title>Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data</title><source>Springer Nature</source><creator>Nakkazi, Maria Theresa ; Nkwasa, Albert ; Martínez, Analy Baltodano ; van Griensven, Ann</creator><creatorcontrib>Nakkazi, Maria Theresa ; Nkwasa, Albert ; Martínez, Analy Baltodano ; van Griensven, Ann</creatorcontrib><description>Due to the continued increase in land use changes and changing climatic patterns in the Lake Victoria basin, understanding the impacts of these changes on the water quality of Lake Victoria is imperative for safeguarding the integrity of the freshwater ecosystem. Thus, we analyzed spatial and temporal patterns of land cover, precipitation, and water quality changes in the Lake Victoria basin between 2000 and 2022 using global satellite products. Focusing on chlorophyll-a (Chl-a) and turbidity (TUR) in Lake Victoria, we used statistical metrics (correlation coefficient, trend analysis, change budget, and intensity analysis) to understand the relationship between land use and precipitation changes in the basin with changes in Chl-a and TUR at two major pollution hotspots on the lake, i.e., Winam Gulf and Inner Murchison Bay (IMB). Results show that the Chl-a and TUR concentrations in the Winam gulf increase with increases in precipitation. Through increases in precipitation, the erosion risks are increased and transport of nutrients from land to the lake system, promoting algal growth and turbidity. In the IMB, Chl-a and TUR concentrations decrease with an increase in precipitation, possibly due to dilution, but peak during moderate rainfall. Interestingly, changes in land use and land cover (LULC) at 5-year intervals showed no substantial correlation with water quality changes at selected hotspots even though a broader LULC change analysis over the past two decades indicated a notable 300% increase in built-up areas across the Lake Victoria basin. These findings underscore the dominant influence of precipitation changes over LULC changes on the water quality of Lake Victoria for the selected hotspot areas.</description><identifier>ISSN: 0167-6369</identifier><identifier>ISSN: 1573-2959</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-024-13261-2</identifier><identifier>PMID: 39453572</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algae ; Algal growth ; Aquatic ecosystems ; Atmospheric Protection/Air Quality Control/Air Pollution ; basins ; chlorophyll ; Chlorophyll - analysis ; Chlorophyll A - analysis ; Climate change ; Correlation coefficient ; Correlation coefficients ; Dilution ; Earth and Environmental Science ; Ecology ; Ecosystem ; Ecotoxicology ; Environment ; Environmental Management ; Environmental Monitoring - methods ; Freshwater ; Freshwater ecosystems ; Hot spots ; Inland water environment ; Lake basins ; Lake Victoria ; Lakes ; Lakes - chemistry ; Land cover ; Land use ; land use and land cover maps ; Monitoring/Environmental Analysis ; Nutrients ; pollution ; Precipitation ; Rain ; Rainfall ; satellites ; Trend analysis ; Turbidity ; Water Quality</subject><ispartof>Environmental monitoring and assessment, 2024-11, Vol.196 (11), p.1104-1104, Article 1104</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-dfca3b8f940997cec8ebebec94e0ea881b600f65c59f38b96e3315d35c4b10ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39453572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakkazi, Maria Theresa</creatorcontrib><creatorcontrib>Nkwasa, Albert</creatorcontrib><creatorcontrib>Martínez, Analy Baltodano</creatorcontrib><creatorcontrib>van Griensven, Ann</creatorcontrib><title>Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>Due to the continued increase in land use changes and changing climatic patterns in the Lake Victoria basin, understanding the impacts of these changes on the water quality of Lake Victoria is imperative for safeguarding the integrity of the freshwater ecosystem. Thus, we analyzed spatial and temporal patterns of land cover, precipitation, and water quality changes in the Lake Victoria basin between 2000 and 2022 using global satellite products. Focusing on chlorophyll-a (Chl-a) and turbidity (TUR) in Lake Victoria, we used statistical metrics (correlation coefficient, trend analysis, change budget, and intensity analysis) to understand the relationship between land use and precipitation changes in the basin with changes in Chl-a and TUR at two major pollution hotspots on the lake, i.e., Winam Gulf and Inner Murchison Bay (IMB). Results show that the Chl-a and TUR concentrations in the Winam gulf increase with increases in precipitation. Through increases in precipitation, the erosion risks are increased and transport of nutrients from land to the lake system, promoting algal growth and turbidity. In the IMB, Chl-a and TUR concentrations decrease with an increase in precipitation, possibly due to dilution, but peak during moderate rainfall. Interestingly, changes in land use and land cover (LULC) at 5-year intervals showed no substantial correlation with water quality changes at selected hotspots even though a broader LULC change analysis over the past two decades indicated a notable 300% increase in built-up areas across the Lake Victoria basin. These findings underscore the dominant influence of precipitation changes over LULC changes on the water quality of Lake Victoria for the selected hotspot areas.</description><subject>Algae</subject><subject>Algal growth</subject><subject>Aquatic ecosystems</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>basins</subject><subject>chlorophyll</subject><subject>Chlorophyll - analysis</subject><subject>Chlorophyll A - analysis</subject><subject>Climate change</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dilution</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental Monitoring - methods</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Hot spots</subject><subject>Inland water environment</subject><subject>Lake basins</subject><subject>Lake Victoria</subject><subject>Lakes</subject><subject>Lakes - chemistry</subject><subject>Land cover</subject><subject>Land use</subject><subject>land use and land cover maps</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nutrients</subject><subject>pollution</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>satellites</subject><subject>Trend analysis</subject><subject>Turbidity</subject><subject>Water Quality</subject><issn>0167-6369</issn><issn>1573-2959</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EotvCF-CALHHhEvCfOLFPCFVQkFbqpeVqOc5k123W3rWdon57HFIW6AEhH8bSPP_eeB5Cryh5Rwlp3ydKmoZWhNUV5azc2BO0oqLlFVNCPUUrQpu2anijTtBpSjeEENXW6jk64aoWXLRshQ5r52-d3-DR-B5PCfBc9xGs27tssgse263xG0g4B_zdZIj4MJnR5ftjw3m8NreAvzmbQ3SmcGYkmJi3OHQJ4t1C6k02L9CzwYwJXj7UM3T9-dPV-ZdqfXnx9fzjurJcqlz1gzW8k4OqiVKtBSuhK8eqGggYKWnXEDI0wgo1cNmpBjinoufC1h0lpudn6MPC3U_dDnoLPkcz6n10OxPvdTBO_93xbqs34U5TKihtqSyEtw-EGA4TpKx3LlkYy6ogTEkXPy5FK6T4DykjZV6mWJG-eSS9CVP0ZRWLShElZm-2qGwMKUUYjoNTouf09ZK-Lunrn-nrGf36zy8fn_yKuwj4IkilVaKLv73_gf0B_Ia8ww</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Nakkazi, Maria Theresa</creator><creator>Nkwasa, Albert</creator><creator>Martínez, Analy Baltodano</creator><creator>van Griensven, Ann</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20241101</creationdate><title>Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data</title><author>Nakkazi, Maria Theresa ; Nkwasa, Albert ; Martínez, Analy Baltodano ; van Griensven, Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-dfca3b8f940997cec8ebebec94e0ea881b600f65c59f38b96e3315d35c4b10ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Algal growth</topic><topic>Aquatic ecosystems</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>basins</topic><topic>chlorophyll</topic><topic>Chlorophyll - analysis</topic><topic>Chlorophyll A - analysis</topic><topic>Climate change</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dilution</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental Monitoring - methods</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Hot spots</topic><topic>Inland water environment</topic><topic>Lake basins</topic><topic>Lake Victoria</topic><topic>Lakes</topic><topic>Lakes - chemistry</topic><topic>Land cover</topic><topic>Land use</topic><topic>land use and land cover maps</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nutrients</topic><topic>pollution</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>satellites</topic><topic>Trend analysis</topic><topic>Turbidity</topic><topic>Water Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakkazi, Maria Theresa</creatorcontrib><creatorcontrib>Nkwasa, Albert</creatorcontrib><creatorcontrib>Martínez, Analy Baltodano</creatorcontrib><creatorcontrib>van Griensven, Ann</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakkazi, Maria Theresa</au><au>Nkwasa, Albert</au><au>Martínez, Analy Baltodano</au><au>van Griensven, Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>196</volume><issue>11</issue><spage>1104</spage><epage>1104</epage><pages>1104-1104</pages><artnum>1104</artnum><issn>0167-6369</issn><issn>1573-2959</issn><eissn>1573-2959</eissn><abstract>Due to the continued increase in land use changes and changing climatic patterns in the Lake Victoria basin, understanding the impacts of these changes on the water quality of Lake Victoria is imperative for safeguarding the integrity of the freshwater ecosystem. Thus, we analyzed spatial and temporal patterns of land cover, precipitation, and water quality changes in the Lake Victoria basin between 2000 and 2022 using global satellite products. Focusing on chlorophyll-a (Chl-a) and turbidity (TUR) in Lake Victoria, we used statistical metrics (correlation coefficient, trend analysis, change budget, and intensity analysis) to understand the relationship between land use and precipitation changes in the basin with changes in Chl-a and TUR at two major pollution hotspots on the lake, i.e., Winam Gulf and Inner Murchison Bay (IMB). Results show that the Chl-a and TUR concentrations in the Winam gulf increase with increases in precipitation. Through increases in precipitation, the erosion risks are increased and transport of nutrients from land to the lake system, promoting algal growth and turbidity. In the IMB, Chl-a and TUR concentrations decrease with an increase in precipitation, possibly due to dilution, but peak during moderate rainfall. Interestingly, changes in land use and land cover (LULC) at 5-year intervals showed no substantial correlation with water quality changes at selected hotspots even though a broader LULC change analysis over the past two decades indicated a notable 300% increase in built-up areas across the Lake Victoria basin. These findings underscore the dominant influence of precipitation changes over LULC changes on the water quality of Lake Victoria for the selected hotspot areas.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39453572</pmid><doi>10.1007/s10661-024-13261-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6369 |
ispartof | Environmental monitoring and assessment, 2024-11, Vol.196 (11), p.1104-1104, Article 1104 |
issn | 0167-6369 1573-2959 1573-2959 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511718 |
source | Springer Nature |
subjects | Algae Algal growth Aquatic ecosystems Atmospheric Protection/Air Quality Control/Air Pollution basins chlorophyll Chlorophyll - analysis Chlorophyll A - analysis Climate change Correlation coefficient Correlation coefficients Dilution Earth and Environmental Science Ecology Ecosystem Ecotoxicology Environment Environmental Management Environmental Monitoring - methods Freshwater Freshwater ecosystems Hot spots Inland water environment Lake basins Lake Victoria Lakes Lakes - chemistry Land cover Land use land use and land cover maps Monitoring/Environmental Analysis Nutrients pollution Precipitation Rain Rainfall satellites Trend analysis Turbidity Water Quality |
title | Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20land%20use%20and%20precipitation%20changes%20to%20water%20quality%20changes%20in%20Lake%20Victoria%20using%20earth%20observation%20data&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Nakkazi,%20Maria%20Theresa&rft.date=2024-11-01&rft.volume=196&rft.issue=11&rft.spage=1104&rft.epage=1104&rft.pages=1104-1104&rft.artnum=1104&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-024-13261-2&rft_dat=%3Cproquest_pubme%3E3153857585%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-dfca3b8f940997cec8ebebec94e0ea881b600f65c59f38b96e3315d35c4b10ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120690958&rft_id=info:pmid/39453572&rfr_iscdi=true |