Loading…

Differential Effect of Aldosterone or Mineralocorticoid Receptor Overexpression on Retinal Inflammation

Overactivation of the mineralocorticoid receptor (MR) pathway is proinflammatory and contributes to the pathogenesis of diabetic retinopathy and of age-related macular degeneration. Excess of aldosterone, the specific MR ligand, is known to stimulate the production of proinflammatory cytokines and c...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science 2024-10, Vol.65 (12), p.39
Main Authors: Leclercq, Bastien, Mejlachowicz, Dan, Zhu, Linxin, Jonet, Laurent, Mehanna, Chadi, Berdugo, Marianne, Irinopoulou, Theano, Jaisser, Fréderic, Zhao, Min, Behar-Cohen, Francine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overactivation of the mineralocorticoid receptor (MR) pathway is proinflammatory and contributes to the pathogenesis of diabetic retinopathy and of age-related macular degeneration. Excess of aldosterone, the specific MR ligand, is known to stimulate the production of proinflammatory cytokines and chemokines in extrarenal tissues and cells. In the RPE/choroid complex, aldosterone upregulated genes encoding proteins of the inflammatory response and downregulated genes encoding proteins involved in synaptic activity and neurotransmitters. Yet, cortisol, which is the main MR ligand in the eye, is a potent anti-inflammatory endogenous glucocorticoid. The aim of the present work was to better understand the role of MR activation in retinal inflammation either by acute injection of aldosterone or overexpression of the receptor. We first analyzed the retinal transcriptomic regulation induced by acute intraocular injection of aldosterone in the rat. Then, we used a transgenic rat overexpressing human MR (hMR) to also conduct retinal transcriptomic analysis as well as histological evaluation of the retina, retinal pigment epithelium and choroid. Our results show that acute intravitreal injection of aldosterone is highly proinflammatory, upregulating pathways related to microglial activation, oxidative stress, cell death, and downregulating pathways related to glial/neuronal cells activity and proper neurotransmission. On the other hand, hMR overexpression mediates a low-grade inflammation in the retina, associated with notable choroidal inflammation and choroidal neuropathy. Consequences of hMR overexpression or aldosterone-injection on retinal transcriptome reveal very distinct pathological mechanisms, with only a few common genes regulated, most of them not being regulated in the same way. Although aldosterone is highly proinflammatory in the retina, MR overactivation in its physiologic milieu mediates a low-grade inflammation in the neural retina.
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.65.12.39