Loading…

Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view

The ongoing climate change and the ecological challenges call for sustainable medicine and, in our field, sustainable kidney care. Dialysis is life-saving and resource-consuming, and high water consumption is one of the main concerns. Circular water economy, meaning reuse and recycling of water, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nephrology 2024-09, Vol.37 (7), p.1801-1805
Main Authors: Tarrass, Faissal, Benjelloun, Meryem, Piccoli, Giorgina Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c328t-b407b18d93139f48caceacffdd67d64a4d25b8a956cdfafee0f2c7747f8da2b93
container_end_page 1805
container_issue 7
container_start_page 1801
container_title Journal of nephrology
container_volume 37
creator Tarrass, Faissal
Benjelloun, Meryem
Piccoli, Giorgina Barbara
description The ongoing climate change and the ecological challenges call for sustainable medicine and, in our field, sustainable kidney care. Dialysis is life-saving and resource-consuming, and high water consumption is one of the main concerns. Circular water economy, meaning reuse and recycling of water, and recovering resources can help reducing emissions and enhancing resilience to climate change. Several actions are possible including reusing reverse osmosis reject water, employable for gardening, aquaponics or even simply for toilet flushing, or in sterilization settings, reusing spent dialysate, at least for toilet flushing, but with wider use if microbiologically purified, recovering thermal energy from spent dialysate, that can probably be done with simple devices, or using phosphate-rich spent dialysate for producing fertilizers, namely struvite. All these options may be economically sound, and all help reducing the final dialysis carbon footprint. There is room for open-minded innovative approaches to improve water-related sustainability in hemodialysis, ultimately reducing ecological impact and increasing availability. Graphical abstract
doi_str_mv 10.1007/s40620-024-01989-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11519137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064580044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b407b18d93139f48caceacffdd67d64a4d25b8a956cdfafee0f2c7747f8da2b93</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwAiyQl2xS_JfEXlVVVShSJTYgltbEHt_rksTBThrdt8dwS1U2rGzPOXNm5K-q3jJ6zijtPmRJW05rymVNmVa6bp9Vp6wrz5Y2-vmT-0n1Kuc7SnnTcPmyOhFKCcaFPq3SDY7RBRgOOWSywYKJJFwzki0s-zARIDYkuw6QCNo4xfFAYJ5TBLs_J9_3sBALE9mQgHNkicSuKeG0kB9T3AZ0O7wgl2SOoZSiJ_cBt9fVCw9DxjcP51n17eP116ub-vbLp89Xl7e1FVwtdS9p1zPltGBCe6ksWATrvXNt51oJ0vGmV6Cb1joPHpF6brtOdl454L0WZ9XFMXde-xGdLVslGMycwgjpYCIE868yhb3ZxXvDWMM0E11JeP-QkOLPFfNixpAtDgNMGNdsBG1loyiVslj50WpTzDmhf5zDqPlNyxxpmULL_KFl2tL07umGjy1_8RSDOBpykaYdJnMX1zSVX_tf7C94dqOh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064580044</pqid></control><display><type>article</type><title>Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view</title><source>Springer Nature</source><creator>Tarrass, Faissal ; Benjelloun, Meryem ; Piccoli, Giorgina Barbara</creator><creatorcontrib>Tarrass, Faissal ; Benjelloun, Meryem ; Piccoli, Giorgina Barbara</creatorcontrib><description>The ongoing climate change and the ecological challenges call for sustainable medicine and, in our field, sustainable kidney care. Dialysis is life-saving and resource-consuming, and high water consumption is one of the main concerns. Circular water economy, meaning reuse and recycling of water, and recovering resources can help reducing emissions and enhancing resilience to climate change. Several actions are possible including reusing reverse osmosis reject water, employable for gardening, aquaponics or even simply for toilet flushing, or in sterilization settings, reusing spent dialysate, at least for toilet flushing, but with wider use if microbiologically purified, recovering thermal energy from spent dialysate, that can probably be done with simple devices, or using phosphate-rich spent dialysate for producing fertilizers, namely struvite. All these options may be economically sound, and all help reducing the final dialysis carbon footprint. There is room for open-minded innovative approaches to improve water-related sustainability in hemodialysis, ultimately reducing ecological impact and increasing availability. Graphical abstract</description><identifier>ISSN: 1724-6059</identifier><identifier>ISSN: 1121-8428</identifier><identifier>EISSN: 1724-6059</identifier><identifier>DOI: 10.1007/s40620-024-01989-6</identifier><identifier>PMID: 38831239</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Climate Change ; Conservation of Water Resources - methods ; Hemodialysis Solutions ; Humans ; Medicine ; Medicine &amp; Public Health ; Nephrology ; Points of View ; Recycling ; Renal Dialysis - economics ; Urology ; Water Purification - economics ; Water Purification - methods</subject><ispartof>Journal of nephrology, 2024-09, Vol.37 (7), p.1801-1805</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-b407b18d93139f48caceacffdd67d64a4d25b8a956cdfafee0f2c7747f8da2b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38831239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarrass, Faissal</creatorcontrib><creatorcontrib>Benjelloun, Meryem</creatorcontrib><creatorcontrib>Piccoli, Giorgina Barbara</creatorcontrib><title>Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view</title><title>Journal of nephrology</title><addtitle>J Nephrol</addtitle><addtitle>J Nephrol</addtitle><description>The ongoing climate change and the ecological challenges call for sustainable medicine and, in our field, sustainable kidney care. Dialysis is life-saving and resource-consuming, and high water consumption is one of the main concerns. Circular water economy, meaning reuse and recycling of water, and recovering resources can help reducing emissions and enhancing resilience to climate change. Several actions are possible including reusing reverse osmosis reject water, employable for gardening, aquaponics or even simply for toilet flushing, or in sterilization settings, reusing spent dialysate, at least for toilet flushing, but with wider use if microbiologically purified, recovering thermal energy from spent dialysate, that can probably be done with simple devices, or using phosphate-rich spent dialysate for producing fertilizers, namely struvite. All these options may be economically sound, and all help reducing the final dialysis carbon footprint. There is room for open-minded innovative approaches to improve water-related sustainability in hemodialysis, ultimately reducing ecological impact and increasing availability. Graphical abstract</description><subject>Climate Change</subject><subject>Conservation of Water Resources - methods</subject><subject>Hemodialysis Solutions</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nephrology</subject><subject>Points of View</subject><subject>Recycling</subject><subject>Renal Dialysis - economics</subject><subject>Urology</subject><subject>Water Purification - economics</subject><subject>Water Purification - methods</subject><issn>1724-6059</issn><issn>1121-8428</issn><issn>1724-6059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEoqXwAiyQl2xS_JfEXlVVVShSJTYgltbEHt_rksTBThrdt8dwS1U2rGzPOXNm5K-q3jJ6zijtPmRJW05rymVNmVa6bp9Vp6wrz5Y2-vmT-0n1Kuc7SnnTcPmyOhFKCcaFPq3SDY7RBRgOOWSywYKJJFwzki0s-zARIDYkuw6QCNo4xfFAYJ5TBLs_J9_3sBALE9mQgHNkicSuKeG0kB9T3AZ0O7wgl2SOoZSiJ_cBt9fVCw9DxjcP51n17eP116ub-vbLp89Xl7e1FVwtdS9p1zPltGBCe6ksWATrvXNt51oJ0vGmV6Cb1joPHpF6brtOdl454L0WZ9XFMXde-xGdLVslGMycwgjpYCIE868yhb3ZxXvDWMM0E11JeP-QkOLPFfNixpAtDgNMGNdsBG1loyiVslj50WpTzDmhf5zDqPlNyxxpmULL_KFl2tL07umGjy1_8RSDOBpykaYdJnMX1zSVX_tf7C94dqOh</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Tarrass, Faissal</creator><creator>Benjelloun, Meryem</creator><creator>Piccoli, Giorgina Barbara</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240901</creationdate><title>Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view</title><author>Tarrass, Faissal ; Benjelloun, Meryem ; Piccoli, Giorgina Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b407b18d93139f48caceacffdd67d64a4d25b8a956cdfafee0f2c7747f8da2b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Climate Change</topic><topic>Conservation of Water Resources - methods</topic><topic>Hemodialysis Solutions</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nephrology</topic><topic>Points of View</topic><topic>Recycling</topic><topic>Renal Dialysis - economics</topic><topic>Urology</topic><topic>Water Purification - economics</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarrass, Faissal</creatorcontrib><creatorcontrib>Benjelloun, Meryem</creatorcontrib><creatorcontrib>Piccoli, Giorgina Barbara</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarrass, Faissal</au><au>Benjelloun, Meryem</au><au>Piccoli, Giorgina Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view</atitle><jtitle>Journal of nephrology</jtitle><stitle>J Nephrol</stitle><addtitle>J Nephrol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>37</volume><issue>7</issue><spage>1801</spage><epage>1805</epage><pages>1801-1805</pages><issn>1724-6059</issn><issn>1121-8428</issn><eissn>1724-6059</eissn><abstract>The ongoing climate change and the ecological challenges call for sustainable medicine and, in our field, sustainable kidney care. Dialysis is life-saving and resource-consuming, and high water consumption is one of the main concerns. Circular water economy, meaning reuse and recycling of water, and recovering resources can help reducing emissions and enhancing resilience to climate change. Several actions are possible including reusing reverse osmosis reject water, employable for gardening, aquaponics or even simply for toilet flushing, or in sterilization settings, reusing spent dialysate, at least for toilet flushing, but with wider use if microbiologically purified, recovering thermal energy from spent dialysate, that can probably be done with simple devices, or using phosphate-rich spent dialysate for producing fertilizers, namely struvite. All these options may be economically sound, and all help reducing the final dialysis carbon footprint. There is room for open-minded innovative approaches to improve water-related sustainability in hemodialysis, ultimately reducing ecological impact and increasing availability. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38831239</pmid><doi>10.1007/s40620-024-01989-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1724-6059
ispartof Journal of nephrology, 2024-09, Vol.37 (7), p.1801-1805
issn 1724-6059
1121-8428
1724-6059
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11519137
source Springer Nature
subjects Climate Change
Conservation of Water Resources - methods
Hemodialysis Solutions
Humans
Medicine
Medicine & Public Health
Nephrology
Points of View
Recycling
Renal Dialysis - economics
Urology
Water Purification - economics
Water Purification - methods
title Hemodialysis water reuse within a circular economy approach. What can we add to current knowledge? A point of view
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemodialysis%20water%20reuse%20within%20a%20circular%20economy%20approach.%20What%20can%20we%20add%20to%20current%20knowledge?%20A%20point%20of%20view&rft.jtitle=Journal%20of%20nephrology&rft.au=Tarrass,%20Faissal&rft.date=2024-09-01&rft.volume=37&rft.issue=7&rft.spage=1801&rft.epage=1805&rft.pages=1801-1805&rft.issn=1724-6059&rft.eissn=1724-6059&rft_id=info:doi/10.1007/s40620-024-01989-6&rft_dat=%3Cproquest_pubme%3E3064580044%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-b407b18d93139f48caceacffdd67d64a4d25b8a956cdfafee0f2c7747f8da2b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064580044&rft_id=info:pmid/38831239&rfr_iscdi=true