Loading…
The effect of non-receptor-mediated uptake of cholesterol on intracellular cholesterol metabolism in human skin fibroblasts
Unilamellar lipid vesicles of various cholesterol:phosphatidylcholine molar ratios were used to alter, via passive exchange at the plasma membrane, the cellular free cholesterol content of cultured human skin fibroblasts which had been preincubated in lipoprotein-deficient serum. The effects of thes...
Saved in:
Published in: | Biochemical journal 1985-12, Vol.232 (2), p.553-557 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unilamellar lipid vesicles of various cholesterol:phosphatidylcholine molar ratios were used to alter, via passive exchange at the plasma membrane, the cellular free cholesterol content of cultured human skin fibroblasts which had been preincubated in lipoprotein-deficient serum. The effects of these net surface transfers of cholesterol on cellular cholesterol biosynthesis, cholesterol esterification and low density lipoprotein (LDL) binding were determined and were compared with the effects of cholesterol delivered to the cell interior via the receptor-mediated endocytosis of LDL. Both LDL and cholesterol-rich lipid vesicles increased cell cholesterol within 6 h. Cells exposed to LDL also showed, within 6 h, decreased cholesterol synthesis, decreased LDL binding and increased cholesterol esterification. Cells incubated with the cholesterol-rich vesicles showed similar changes but these were delayed and did not occur until 24 h. Fibroblasts incubated with cholesterol-free phosphatidylcholine vesicles had decreased cell cholesterol, increased cholesterol synthesis, increased LDL binding, and decreased esterification, but only after 24 h of incubation. These results suggest that passive net transfers of cholesterol occurring at the cell surface can with time modulate intracellular cholesterol metabolism. These findings are consistent with the idea that the movement of cholesterol from the cell surface to the cell interior is a limited and relatively slow process. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2320553 |