Loading…
Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo
A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactl...
Saved in:
Published in: | Nucleic acids research 2002-05, Vol.30 (10), p.e44-e44 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3 |
---|---|
cites | |
container_end_page | e44 |
container_issue | 10 |
container_start_page | e44 |
container_title | Nucleic acids research |
container_volume | 30 |
creator | Lee Kang, Sung-Hae Vieira, Karen Bungert, Jörg |
description | A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo. |
doi_str_mv | 10.1093/nar/30.10.e44 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_115298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71701740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EosPAki2yWLBL6984QWJRTaEtGmADEmJjeZKbGZfETm3PiHbFO_CGPEkdddQCG1a-9v3u0T0-CD2n5JCSmh85E474VB-CEA_QjPKSFaIu2UM0I5zIghJRHaAnMV4QQgWV4jE6oIwQUol6hq4XflhZZ90aN5vgB5Osw3YYts6PARo72pSfvMPGtfjk4zHuvE9jsC5z69fYYOd30OMB0sa3OPnMmf7qGvAYfALrfv_8NU1lHoJpJqWYL3hnd_4petSZPsKz_TlHX969_bw4K5afTs8Xx8uikUKkomRcCcUa3q2AMl4LVhJZKcakKkWnWsF4w6kEWpcSlJFNB1yyCqQSbcfkis_Rm1vdcbsaoG3ApWB6nU0MJlxpb6z-u-PsRq_9TlMqWV3l-Vf7-eAvtxCTHmxsoO-NA7-NWlFFqBLkvyCtOGc0-5mjl_-AF34b8sdFnYMpCa25zFBxCzXBxxigu9uYEj1Fr3P0mk-1ztFn_sWfNu_pfdb3gjYm-HHXN-G7LhVXUp99_aZP1IeaLN-f6gW_ARjFu9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200601935</pqid></control><display><type>article</type><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</creator><creatorcontrib>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</creatorcontrib><description>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/30.10.e44</identifier><identifier>PMID: 12000849</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; b-globin ; Base Sequence ; Chromatin - genetics ; Chromatin - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Footprinting - methods ; DNA-Binding Proteins - metabolism ; Erythroid-Specific DNA-Binding Factors ; Globins - genetics ; Humans ; Molecular Sequence Data ; NAR Methods Online ; NF-E2 protein ; NF-E2 Transcription Factor ; NF-E2 Transcription Factor, p45 Subunit ; Precipitin Tests - methods ; Promoter Regions, Genetic - genetics ; Protein Binding ; Transcription Factors - metabolism ; Tumor Cells, Cultured ; Upstream Stimulatory Factors ; USF1 protein</subject><ispartof>Nucleic acids research, 2002-05, Vol.30 (10), p.e44-e44</ispartof><rights>Copyright Oxford University Press(England) May 15, 2002</rights><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC115298/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC115298/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12000849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee Kang, Sung-Hae</creatorcontrib><creatorcontrib>Vieira, Karen</creatorcontrib><creatorcontrib>Bungert, Jörg</creatorcontrib><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</description><subject>Animals</subject><subject>b-globin</subject><subject>Base Sequence</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting - methods</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Erythroid-Specific DNA-Binding Factors</subject><subject>Globins - genetics</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>NAR Methods Online</subject><subject>NF-E2 protein</subject><subject>NF-E2 Transcription Factor</subject><subject>NF-E2 Transcription Factor, p45 Subunit</subject><subject>Precipitin Tests - methods</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>Upstream Stimulatory Factors</subject><subject>USF1 protein</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EosPAki2yWLBL6984QWJRTaEtGmADEmJjeZKbGZfETm3PiHbFO_CGPEkdddQCG1a-9v3u0T0-CD2n5JCSmh85E474VB-CEA_QjPKSFaIu2UM0I5zIghJRHaAnMV4QQgWV4jE6oIwQUol6hq4XflhZZ90aN5vgB5Osw3YYts6PARo72pSfvMPGtfjk4zHuvE9jsC5z69fYYOd30OMB0sa3OPnMmf7qGvAYfALrfv_8NU1lHoJpJqWYL3hnd_4petSZPsKz_TlHX969_bw4K5afTs8Xx8uikUKkomRcCcUa3q2AMl4LVhJZKcakKkWnWsF4w6kEWpcSlJFNB1yyCqQSbcfkis_Rm1vdcbsaoG3ApWB6nU0MJlxpb6z-u-PsRq_9TlMqWV3l-Vf7-eAvtxCTHmxsoO-NA7-NWlFFqBLkvyCtOGc0-5mjl_-AF34b8sdFnYMpCa25zFBxCzXBxxigu9uYEj1Fr3P0mk-1ztFn_sWfNu_pfdb3gjYm-HHXN-G7LhVXUp99_aZP1IeaLN-f6gW_ARjFu9U</recordid><startdate>20020515</startdate><enddate>20020515</enddate><creator>Lee Kang, Sung-Hae</creator><creator>Vieira, Karen</creator><creator>Bungert, Jörg</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020515</creationdate><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><author>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>b-globin</topic><topic>Base Sequence</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting - methods</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Erythroid-Specific DNA-Binding Factors</topic><topic>Globins - genetics</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>NAR Methods Online</topic><topic>NF-E2 protein</topic><topic>NF-E2 Transcription Factor</topic><topic>NF-E2 Transcription Factor, p45 Subunit</topic><topic>Precipitin Tests - methods</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>Upstream Stimulatory Factors</topic><topic>USF1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee Kang, Sung-Hae</creatorcontrib><creatorcontrib>Vieira, Karen</creatorcontrib><creatorcontrib>Bungert, Jörg</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee Kang, Sung-Hae</au><au>Vieira, Karen</au><au>Bungert, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-05-15</date><risdate>2002</risdate><volume>30</volume><issue>10</issue><spage>e44</spage><epage>e44</epage><pages>e44-e44</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12000849</pmid><doi>10.1093/nar/30.10.e44</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2002-05, Vol.30 (10), p.e44-e44 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_115298 |
source | Oxford University Press Open Access; PubMed Central |
subjects | Animals b-globin Base Sequence Chromatin - genetics Chromatin - metabolism DNA - genetics DNA - metabolism DNA Footprinting - methods DNA-Binding Proteins - metabolism Erythroid-Specific DNA-Binding Factors Globins - genetics Humans Molecular Sequence Data NAR Methods Online NF-E2 protein NF-E2 Transcription Factor NF-E2 Transcription Factor, p45 Subunit Precipitin Tests - methods Promoter Regions, Genetic - genetics Protein Binding Transcription Factors - metabolism Tumor Cells, Cultured Upstream Stimulatory Factors USF1 protein |
title | Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20chromatin%20immunoprecipitation%20and%20DNA%20footprinting:%20a%20novel%20method%20to%20analyze%20protein%E2%80%93DNA%20interactions%20in%20vivo&rft.jtitle=Nucleic%20acids%20research&rft.au=Lee%20Kang,%20Sung-Hae&rft.date=2002-05-15&rft.volume=30&rft.issue=10&rft.spage=e44&rft.epage=e44&rft.pages=e44-e44&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/30.10.e44&rft_dat=%3Cproquest_pubme%3E71701740%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200601935&rft_id=info:pmid/12000849&rfr_iscdi=true |