Loading…

Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo

A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactl...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2002-05, Vol.30 (10), p.e44-e44
Main Authors: Lee Kang, Sung-Hae, Vieira, Karen, Bungert, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3
cites
container_end_page e44
container_issue 10
container_start_page e44
container_title Nucleic acids research
container_volume 30
creator Lee Kang, Sung-Hae
Vieira, Karen
Bungert, Jörg
description A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.
doi_str_mv 10.1093/nar/30.10.e44
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_115298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71701740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EosPAki2yWLBL6984QWJRTaEtGmADEmJjeZKbGZfETm3PiHbFO_CGPEkdddQCG1a-9v3u0T0-CD2n5JCSmh85E474VB-CEA_QjPKSFaIu2UM0I5zIghJRHaAnMV4QQgWV4jE6oIwQUol6hq4XflhZZ90aN5vgB5Osw3YYts6PARo72pSfvMPGtfjk4zHuvE9jsC5z69fYYOd30OMB0sa3OPnMmf7qGvAYfALrfv_8NU1lHoJpJqWYL3hnd_4petSZPsKz_TlHX969_bw4K5afTs8Xx8uikUKkomRcCcUa3q2AMl4LVhJZKcakKkWnWsF4w6kEWpcSlJFNB1yyCqQSbcfkis_Rm1vdcbsaoG3ApWB6nU0MJlxpb6z-u-PsRq_9TlMqWV3l-Vf7-eAvtxCTHmxsoO-NA7-NWlFFqBLkvyCtOGc0-5mjl_-AF34b8sdFnYMpCa25zFBxCzXBxxigu9uYEj1Fr3P0mk-1ztFn_sWfNu_pfdb3gjYm-HHXN-G7LhVXUp99_aZP1IeaLN-f6gW_ARjFu9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200601935</pqid></control><display><type>article</type><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</creator><creatorcontrib>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</creatorcontrib><description>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/30.10.e44</identifier><identifier>PMID: 12000849</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; b-globin ; Base Sequence ; Chromatin - genetics ; Chromatin - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Footprinting - methods ; DNA-Binding Proteins - metabolism ; Erythroid-Specific DNA-Binding Factors ; Globins - genetics ; Humans ; Molecular Sequence Data ; NAR Methods Online ; NF-E2 protein ; NF-E2 Transcription Factor ; NF-E2 Transcription Factor, p45 Subunit ; Precipitin Tests - methods ; Promoter Regions, Genetic - genetics ; Protein Binding ; Transcription Factors - metabolism ; Tumor Cells, Cultured ; Upstream Stimulatory Factors ; USF1 protein</subject><ispartof>Nucleic acids research, 2002-05, Vol.30 (10), p.e44-e44</ispartof><rights>Copyright Oxford University Press(England) May 15, 2002</rights><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC115298/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC115298/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12000849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee Kang, Sung-Hae</creatorcontrib><creatorcontrib>Vieira, Karen</creatorcontrib><creatorcontrib>Bungert, Jörg</creatorcontrib><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</description><subject>Animals</subject><subject>b-globin</subject><subject>Base Sequence</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Footprinting - methods</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Erythroid-Specific DNA-Binding Factors</subject><subject>Globins - genetics</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>NAR Methods Online</subject><subject>NF-E2 protein</subject><subject>NF-E2 Transcription Factor</subject><subject>NF-E2 Transcription Factor, p45 Subunit</subject><subject>Precipitin Tests - methods</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>Upstream Stimulatory Factors</subject><subject>USF1 protein</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EosPAki2yWLBL6984QWJRTaEtGmADEmJjeZKbGZfETm3PiHbFO_CGPEkdddQCG1a-9v3u0T0-CD2n5JCSmh85E474VB-CEA_QjPKSFaIu2UM0I5zIghJRHaAnMV4QQgWV4jE6oIwQUol6hq4XflhZZ90aN5vgB5Osw3YYts6PARo72pSfvMPGtfjk4zHuvE9jsC5z69fYYOd30OMB0sa3OPnMmf7qGvAYfALrfv_8NU1lHoJpJqWYL3hnd_4petSZPsKz_TlHX969_bw4K5afTs8Xx8uikUKkomRcCcUa3q2AMl4LVhJZKcakKkWnWsF4w6kEWpcSlJFNB1yyCqQSbcfkis_Rm1vdcbsaoG3ApWB6nU0MJlxpb6z-u-PsRq_9TlMqWV3l-Vf7-eAvtxCTHmxsoO-NA7-NWlFFqBLkvyCtOGc0-5mjl_-AF34b8sdFnYMpCa25zFBxCzXBxxigu9uYEj1Fr3P0mk-1ztFn_sWfNu_pfdb3gjYm-HHXN-G7LhVXUp99_aZP1IeaLN-f6gW_ARjFu9U</recordid><startdate>20020515</startdate><enddate>20020515</enddate><creator>Lee Kang, Sung-Hae</creator><creator>Vieira, Karen</creator><creator>Bungert, Jörg</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020515</creationdate><title>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</title><author>Lee Kang, Sung-Hae ; Vieira, Karen ; Bungert, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>b-globin</topic><topic>Base Sequence</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Footprinting - methods</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Erythroid-Specific DNA-Binding Factors</topic><topic>Globins - genetics</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>NAR Methods Online</topic><topic>NF-E2 protein</topic><topic>NF-E2 Transcription Factor</topic><topic>NF-E2 Transcription Factor, p45 Subunit</topic><topic>Precipitin Tests - methods</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>Upstream Stimulatory Factors</topic><topic>USF1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee Kang, Sung-Hae</creatorcontrib><creatorcontrib>Vieira, Karen</creatorcontrib><creatorcontrib>Bungert, Jörg</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee Kang, Sung-Hae</au><au>Vieira, Karen</au><au>Bungert, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-05-15</date><risdate>2002</risdate><volume>30</volume><issue>10</issue><spage>e44</spage><epage>e44</epage><pages>e44-e44</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12000849</pmid><doi>10.1093/nar/30.10.e44</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2002-05, Vol.30 (10), p.e44-e44
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_115298
source Oxford University Press Open Access; PubMed Central
subjects Animals
b-globin
Base Sequence
Chromatin - genetics
Chromatin - metabolism
DNA - genetics
DNA - metabolism
DNA Footprinting - methods
DNA-Binding Proteins - metabolism
Erythroid-Specific DNA-Binding Factors
Globins - genetics
Humans
Molecular Sequence Data
NAR Methods Online
NF-E2 protein
NF-E2 Transcription Factor
NF-E2 Transcription Factor, p45 Subunit
Precipitin Tests - methods
Promoter Regions, Genetic - genetics
Protein Binding
Transcription Factors - metabolism
Tumor Cells, Cultured
Upstream Stimulatory Factors
USF1 protein
title Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein–DNA interactions in vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20chromatin%20immunoprecipitation%20and%20DNA%20footprinting:%20a%20novel%20method%20to%20analyze%20protein%E2%80%93DNA%20interactions%20in%20vivo&rft.jtitle=Nucleic%20acids%20research&rft.au=Lee%20Kang,%20Sung-Hae&rft.date=2002-05-15&rft.volume=30&rft.issue=10&rft.spage=e44&rft.epage=e44&rft.pages=e44-e44&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/30.10.e44&rft_dat=%3Cproquest_pubme%3E71701740%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-6237472c3fbe12394260587225764f7d423c315e1965e7a5cfe3528e574df25b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200601935&rft_id=info:pmid/12000849&rfr_iscdi=true