Loading…
Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs
Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA...
Saved in:
Published in: | International journal of molecular sciences 2024-11, Vol.25 (21), p.11439 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-41432e30cddd2b56c068161bbd26ed2d046bc900d9547aadd9677146f7a51223 |
container_end_page | |
container_issue | 21 |
container_start_page | 11439 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Lin, Yixin Rasmussen, Mads Heilskov Christensen, Mikkel Hovden Frydendahl, Amanda Maretty, Lasse Andersen, Claus Lindbjerg Besenbacher, Søren |
description | Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA with Unique Molecular Identifiers (UMIs) from 111 colorectal cancer patients. Performance was assessed at both the mutation level (distinguish tumor variants from errors) and the sample level (detect if an individual has cancer). Additionally, we investigated the effects of various UMI grouping and consensus strategies. The shearwater-AND variant calling method demonstrated the highest precision in detecting tumor-derived mutations from plasma, and reached the highest ROC-AUC of 0.984 for sample classification in tumor-informed cfDNA analyses. DREAMS-vc exhibited the highest ROC-AUC of 0.808 for sample classification in tumor-agnostic studies. We also found that sequencing depth differences in PBMCs could lead to false positives, particularly with VarScan2 and Mutect2, which was addressed by downsampling to equivalent mean depths. Additionally, network-based UMI grouping methods outperformed those using identical UMIs when all reads were retained. Our findings emphasize that the optimal variant caller depends on the study context-whether focused on mutation or sample classification, and whether conducted under tumor-informed or tumor-agnostic conditions. |
doi_str_mv | 10.3390/ijms252111439 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11546253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815345853</galeid><sourcerecordid>A815345853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-41432e30cddd2b56c068161bbd26ed2d046bc900d9547aadd9677146f7a51223</originalsourceid><addsrcrecordid>eNptks9PFDEUxxujEQSPXk0TL14G-3umJ7MCKgkoCYvXptN2lm5mWmhnMP73dhYku8T00Pa9z_u-fF8eAO8wOqJUok9-PWTCCcaYUfkC7GNGSIWQqF9uvffAm5zXCBFKuHwN9qjkuJES7YNweq_7SY8-rOAXH33oYhrK12R4maJxOc-Z2MGruAnDXzp5HUZ44kZnRh8D9AGa7uTHAl5v2KVOq5Kz8MrdTS6YOfbbjzfw-uIsH4JXne6ze_t4H4Dl19Pl8ffq_Oe3s-PFeWWokGPFihniKDLWWtJyYZBosMBta4lwlljERGskQlZyVmttrRR1jZnoas0xIfQAfH6QvZ3awVnjwph0r26TH3T6o6L2ajcT_I1axXuFMWeCcFoUPj4qpFhs5FENPhvX9zq4OGVFMWlqxihqCvrhGbqOUwrF3kwJxLHEW9RK907Ncy6NzSyqFg3mlPFm0_boP1Q51g3exOA6X-I7BdVDgUkx5-S6J5MYqXlB1M6CFP799mSe6H8bQf8CB3610A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126051918</pqid></control><display><type>article</type><title>Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Lin, Yixin ; Rasmussen, Mads Heilskov ; Christensen, Mikkel Hovden ; Frydendahl, Amanda ; Maretty, Lasse ; Andersen, Claus Lindbjerg ; Besenbacher, Søren</creator><creatorcontrib>Lin, Yixin ; Rasmussen, Mads Heilskov ; Christensen, Mikkel Hovden ; Frydendahl, Amanda ; Maretty, Lasse ; Andersen, Claus Lindbjerg ; Besenbacher, Søren</creatorcontrib><description>Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA with Unique Molecular Identifiers (UMIs) from 111 colorectal cancer patients. Performance was assessed at both the mutation level (distinguish tumor variants from errors) and the sample level (detect if an individual has cancer). Additionally, we investigated the effects of various UMI grouping and consensus strategies. The shearwater-AND variant calling method demonstrated the highest precision in detecting tumor-derived mutations from plasma, and reached the highest ROC-AUC of 0.984 for sample classification in tumor-informed cfDNA analyses. DREAMS-vc exhibited the highest ROC-AUC of 0.808 for sample classification in tumor-agnostic studies. We also found that sequencing depth differences in PBMCs could lead to false positives, particularly with VarScan2 and Mutect2, which was addressed by downsampling to equivalent mean depths. Additionally, network-based UMI grouping methods outperformed those using identical UMIs when all reads were retained. Our findings emphasize that the optimal variant caller depends on the study context-whether focused on mutation or sample classification, and whether conducted under tumor-informed or tumor-agnostic conditions.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms252111439</identifier><identifier>PMID: 39518990</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aged ; Binomial distribution ; Biomarkers, Tumor - genetics ; Biopsy ; Cancer ; Cancer cells ; Cell-Free Nucleic Acids - blood ; Cell-Free Nucleic Acids - genetics ; Circulating Tumor DNA - blood ; Circulating Tumor DNA - genetics ; Colorectal cancer ; Colorectal Neoplasms - blood ; Colorectal Neoplasms - diagnosis ; Colorectal Neoplasms - genetics ; Computational Biology - methods ; Diagnosis ; DNA damage ; DNA sequencing ; Female ; Genetic aspects ; Genetic variation ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Identification and classification ; Male ; Medical screening ; Middle Aged ; Mutation ; Nucleotide sequencing ; Patients ; Plasma ; ROC Curve ; Software</subject><ispartof>International journal of molecular sciences, 2024-11, Vol.25 (21), p.11439</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-41432e30cddd2b56c068161bbd26ed2d046bc900d9547aadd9677146f7a51223</cites><orcidid>0000-0002-7406-2103 ; 0000-0003-1455-1738 ; 0000-0001-5723-6303 ; 0000-0001-9552-5421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126051918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126051918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39518990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yixin</creatorcontrib><creatorcontrib>Rasmussen, Mads Heilskov</creatorcontrib><creatorcontrib>Christensen, Mikkel Hovden</creatorcontrib><creatorcontrib>Frydendahl, Amanda</creatorcontrib><creatorcontrib>Maretty, Lasse</creatorcontrib><creatorcontrib>Andersen, Claus Lindbjerg</creatorcontrib><creatorcontrib>Besenbacher, Søren</creatorcontrib><title>Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA with Unique Molecular Identifiers (UMIs) from 111 colorectal cancer patients. Performance was assessed at both the mutation level (distinguish tumor variants from errors) and the sample level (detect if an individual has cancer). Additionally, we investigated the effects of various UMI grouping and consensus strategies. The shearwater-AND variant calling method demonstrated the highest precision in detecting tumor-derived mutations from plasma, and reached the highest ROC-AUC of 0.984 for sample classification in tumor-informed cfDNA analyses. DREAMS-vc exhibited the highest ROC-AUC of 0.808 for sample classification in tumor-agnostic studies. We also found that sequencing depth differences in PBMCs could lead to false positives, particularly with VarScan2 and Mutect2, which was addressed by downsampling to equivalent mean depths. Additionally, network-based UMI grouping methods outperformed those using identical UMIs when all reads were retained. Our findings emphasize that the optimal variant caller depends on the study context-whether focused on mutation or sample classification, and whether conducted under tumor-informed or tumor-agnostic conditions.</description><subject>Aged</subject><subject>Binomial distribution</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cell-Free Nucleic Acids - blood</subject><subject>Cell-Free Nucleic Acids - genetics</subject><subject>Circulating Tumor DNA - blood</subject><subject>Circulating Tumor DNA - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal Neoplasms - blood</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Computational Biology - methods</subject><subject>Diagnosis</subject><subject>DNA damage</subject><subject>DNA sequencing</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genetic variation</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Male</subject><subject>Medical screening</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Patients</subject><subject>Plasma</subject><subject>ROC Curve</subject><subject>Software</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks9PFDEUxxujEQSPXk0TL14G-3umJ7MCKgkoCYvXptN2lm5mWmhnMP73dhYku8T00Pa9z_u-fF8eAO8wOqJUok9-PWTCCcaYUfkC7GNGSIWQqF9uvffAm5zXCBFKuHwN9qjkuJES7YNweq_7SY8-rOAXH33oYhrK12R4maJxOc-Z2MGruAnDXzp5HUZ44kZnRh8D9AGa7uTHAl5v2KVOq5Kz8MrdTS6YOfbbjzfw-uIsH4JXne6ze_t4H4Dl19Pl8ffq_Oe3s-PFeWWokGPFihniKDLWWtJyYZBosMBta4lwlljERGskQlZyVmttrRR1jZnoas0xIfQAfH6QvZ3awVnjwph0r26TH3T6o6L2ajcT_I1axXuFMWeCcFoUPj4qpFhs5FENPhvX9zq4OGVFMWlqxihqCvrhGbqOUwrF3kwJxLHEW9RK907Ncy6NzSyqFg3mlPFm0_boP1Q51g3exOA6X-I7BdVDgUkx5-S6J5MYqXlB1M6CFP799mSe6H8bQf8CB3610A</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lin, Yixin</creator><creator>Rasmussen, Mads Heilskov</creator><creator>Christensen, Mikkel Hovden</creator><creator>Frydendahl, Amanda</creator><creator>Maretty, Lasse</creator><creator>Andersen, Claus Lindbjerg</creator><creator>Besenbacher, Søren</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7406-2103</orcidid><orcidid>https://orcid.org/0000-0003-1455-1738</orcidid><orcidid>https://orcid.org/0000-0001-5723-6303</orcidid><orcidid>https://orcid.org/0000-0001-9552-5421</orcidid></search><sort><creationdate>20241101</creationdate><title>Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs</title><author>Lin, Yixin ; Rasmussen, Mads Heilskov ; Christensen, Mikkel Hovden ; Frydendahl, Amanda ; Maretty, Lasse ; Andersen, Claus Lindbjerg ; Besenbacher, Søren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-41432e30cddd2b56c068161bbd26ed2d046bc900d9547aadd9677146f7a51223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Binomial distribution</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cell-Free Nucleic Acids - blood</topic><topic>Cell-Free Nucleic Acids - genetics</topic><topic>Circulating Tumor DNA - blood</topic><topic>Circulating Tumor DNA - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal Neoplasms - blood</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Computational Biology - methods</topic><topic>Diagnosis</topic><topic>DNA damage</topic><topic>DNA sequencing</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genetic variation</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Male</topic><topic>Medical screening</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Patients</topic><topic>Plasma</topic><topic>ROC Curve</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yixin</creatorcontrib><creatorcontrib>Rasmussen, Mads Heilskov</creatorcontrib><creatorcontrib>Christensen, Mikkel Hovden</creatorcontrib><creatorcontrib>Frydendahl, Amanda</creatorcontrib><creatorcontrib>Maretty, Lasse</creatorcontrib><creatorcontrib>Andersen, Claus Lindbjerg</creatorcontrib><creatorcontrib>Besenbacher, Søren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yixin</au><au>Rasmussen, Mads Heilskov</au><au>Christensen, Mikkel Hovden</au><au>Frydendahl, Amanda</au><au>Maretty, Lasse</au><au>Andersen, Claus Lindbjerg</au><au>Besenbacher, Søren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>25</volume><issue>21</issue><spage>11439</spage><pages>11439-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA with Unique Molecular Identifiers (UMIs) from 111 colorectal cancer patients. Performance was assessed at both the mutation level (distinguish tumor variants from errors) and the sample level (detect if an individual has cancer). Additionally, we investigated the effects of various UMI grouping and consensus strategies. The shearwater-AND variant calling method demonstrated the highest precision in detecting tumor-derived mutations from plasma, and reached the highest ROC-AUC of 0.984 for sample classification in tumor-informed cfDNA analyses. DREAMS-vc exhibited the highest ROC-AUC of 0.808 for sample classification in tumor-agnostic studies. We also found that sequencing depth differences in PBMCs could lead to false positives, particularly with VarScan2 and Mutect2, which was addressed by downsampling to equivalent mean depths. Additionally, network-based UMI grouping methods outperformed those using identical UMIs when all reads were retained. Our findings emphasize that the optimal variant caller depends on the study context-whether focused on mutation or sample classification, and whether conducted under tumor-informed or tumor-agnostic conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39518990</pmid><doi>10.3390/ijms252111439</doi><orcidid>https://orcid.org/0000-0002-7406-2103</orcidid><orcidid>https://orcid.org/0000-0003-1455-1738</orcidid><orcidid>https://orcid.org/0000-0001-5723-6303</orcidid><orcidid>https://orcid.org/0000-0001-9552-5421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-11, Vol.25 (21), p.11439 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11546253 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Aged Binomial distribution Biomarkers, Tumor - genetics Biopsy Cancer Cancer cells Cell-Free Nucleic Acids - blood Cell-Free Nucleic Acids - genetics Circulating Tumor DNA - blood Circulating Tumor DNA - genetics Colorectal cancer Colorectal Neoplasms - blood Colorectal Neoplasms - diagnosis Colorectal Neoplasms - genetics Computational Biology - methods Diagnosis DNA damage DNA sequencing Female Genetic aspects Genetic variation High-Throughput Nucleotide Sequencing - methods Humans Identification and classification Male Medical screening Middle Aged Mutation Nucleotide sequencing Patients Plasma ROC Curve Software |
title | Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Bioinformatics%20Processing%20of%20Somatic%20Variant%20Detection%20in%20cfDNA%20Using%20Targeted%20Sequencing%20with%20UMIs&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lin,%20Yixin&rft.date=2024-11-01&rft.volume=25&rft.issue=21&rft.spage=11439&rft.pages=11439-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms252111439&rft_dat=%3Cgale_pubme%3EA815345853%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-41432e30cddd2b56c068161bbd26ed2d046bc900d9547aadd9677146f7a51223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126051918&rft_id=info:pmid/39518990&rft_galeid=A815345853&rfr_iscdi=true |