Loading…

Generative hypergraph clustering: From blockmodels to modularity

Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node deg...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2021-07, Vol.7 (28)
Main Authors: Chodrow, Philip S, Veldt, Nate, Benson, Austin R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23
cites cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23
container_end_page
container_issue 28
container_start_page
container_title Science advances
container_volume 7
creator Chodrow, Philip S
Veldt, Nate
Benson, Austin R
description Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.
doi_str_mv 10.1126/sciadv.abh1303
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11559555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549687515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EolXpyogysrT4I44TFkAVLUiVWGC2HPvSBJw42Eml_vekakFluifdu3dPP4SuCZ4TQpO7oCtltnOVl4RhdobGlAk-ozxOz0_0CE1D-MQYkzhJOMku0YjFlLE0xWP0uIIGvOqqLUTlrgW_8aotI2370IGvms19tPSujnLr9FftDNgQdS4aVG-Vr7rdFboolA0wPc4J-lg-vy9eZuu31eviaT3TLCPdzNAcp5iJGCtDCsgN1YIbSIBCJgzPBRUpxiYXRgAhmKSsUDhmQGPFY2Uom6CHQ27b5zUYDU3nlZWtr2rld9KpSv7fNFUpN24rCeE845wPCbfHBO--ewidrKugwVrVgOuDHFhlSSo42VvnB6v2LgQPxd8fguUevTygl0f0w8HNabs_-y9o9gN5BYLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549687515</pqid></control><display><type>article</type><title>Generative hypergraph clustering: From blockmodels to modularity</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</creator><creatorcontrib>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</creatorcontrib><description>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abh1303</identifier><identifier>PMID: 34233880</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Computer Science ; Network Science ; SciAdv r-articles</subject><ispartof>Science advances, 2021-07, Vol.7 (28)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</citedby><cites>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</cites><orcidid>0000-0001-5667-490X ; 0000-0002-0117-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34233880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chodrow, Philip S</creatorcontrib><creatorcontrib>Veldt, Nate</creatorcontrib><creatorcontrib>Benson, Austin R</creatorcontrib><title>Generative hypergraph clustering: From blockmodels to modularity</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</description><subject>Computer Science</subject><subject>Network Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EolXpyogysrT4I44TFkAVLUiVWGC2HPvSBJw42Eml_vekakFluifdu3dPP4SuCZ4TQpO7oCtltnOVl4RhdobGlAk-ozxOz0_0CE1D-MQYkzhJOMku0YjFlLE0xWP0uIIGvOqqLUTlrgW_8aotI2370IGvms19tPSujnLr9FftDNgQdS4aVG-Vr7rdFboolA0wPc4J-lg-vy9eZuu31eviaT3TLCPdzNAcp5iJGCtDCsgN1YIbSIBCJgzPBRUpxiYXRgAhmKSsUDhmQGPFY2Uom6CHQ27b5zUYDU3nlZWtr2rld9KpSv7fNFUpN24rCeE845wPCbfHBO--ewidrKugwVrVgOuDHFhlSSo42VvnB6v2LgQPxd8fguUevTygl0f0w8HNabs_-y9o9gN5BYLf</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Chodrow, Philip S</creator><creator>Veldt, Nate</creator><creator>Benson, Austin R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5667-490X</orcidid><orcidid>https://orcid.org/0000-0002-0117-3304</orcidid></search><sort><creationdate>20210701</creationdate><title>Generative hypergraph clustering: From blockmodels to modularity</title><author>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Network Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chodrow, Philip S</creatorcontrib><creatorcontrib>Veldt, Nate</creatorcontrib><creatorcontrib>Benson, Austin R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chodrow, Philip S</au><au>Veldt, Nate</au><au>Benson, Austin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative hypergraph clustering: From blockmodels to modularity</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>7</volume><issue>28</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34233880</pmid><doi>10.1126/sciadv.abh1303</doi><orcidid>https://orcid.org/0000-0001-5667-490X</orcidid><orcidid>https://orcid.org/0000-0002-0117-3304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-07, Vol.7 (28)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11559555
source American Association for the Advancement of Science; PubMed Central
subjects Computer Science
Network Science
SciAdv r-articles
title Generative hypergraph clustering: From blockmodels to modularity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20hypergraph%20clustering:%20From%20blockmodels%20to%20modularity&rft.jtitle=Science%20advances&rft.au=Chodrow,%20Philip%20S&rft.date=2021-07-01&rft.volume=7&rft.issue=28&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abh1303&rft_dat=%3Cproquest_pubme%3E2549687515%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549687515&rft_id=info:pmid/34233880&rfr_iscdi=true