Loading…
Generative hypergraph clustering: From blockmodels to modularity
Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node deg...
Saved in:
Published in: | Science advances 2021-07, Vol.7 (28) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23 |
container_end_page | |
container_issue | 28 |
container_start_page | |
container_title | Science advances |
container_volume | 7 |
creator | Chodrow, Philip S Veldt, Nate Benson, Austin R |
description | Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions. |
doi_str_mv | 10.1126/sciadv.abh1303 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11559555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549687515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EolXpyogysrT4I44TFkAVLUiVWGC2HPvSBJw42Eml_vekakFluifdu3dPP4SuCZ4TQpO7oCtltnOVl4RhdobGlAk-ozxOz0_0CE1D-MQYkzhJOMku0YjFlLE0xWP0uIIGvOqqLUTlrgW_8aotI2370IGvms19tPSujnLr9FftDNgQdS4aVG-Vr7rdFboolA0wPc4J-lg-vy9eZuu31eviaT3TLCPdzNAcp5iJGCtDCsgN1YIbSIBCJgzPBRUpxiYXRgAhmKSsUDhmQGPFY2Uom6CHQ27b5zUYDU3nlZWtr2rld9KpSv7fNFUpN24rCeE845wPCbfHBO--ewidrKugwVrVgOuDHFhlSSo42VvnB6v2LgQPxd8fguUevTygl0f0w8HNabs_-y9o9gN5BYLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549687515</pqid></control><display><type>article</type><title>Generative hypergraph clustering: From blockmodels to modularity</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</creator><creatorcontrib>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</creatorcontrib><description>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abh1303</identifier><identifier>PMID: 34233880</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Computer Science ; Network Science ; SciAdv r-articles</subject><ispartof>Science advances, 2021-07, Vol.7 (28)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</citedby><cites>FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</cites><orcidid>0000-0001-5667-490X ; 0000-0002-0117-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34233880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chodrow, Philip S</creatorcontrib><creatorcontrib>Veldt, Nate</creatorcontrib><creatorcontrib>Benson, Austin R</creatorcontrib><title>Generative hypergraph clustering: From blockmodels to modularity</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</description><subject>Computer Science</subject><subject>Network Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EolXpyogysrT4I44TFkAVLUiVWGC2HPvSBJw42Eml_vekakFluifdu3dPP4SuCZ4TQpO7oCtltnOVl4RhdobGlAk-ozxOz0_0CE1D-MQYkzhJOMku0YjFlLE0xWP0uIIGvOqqLUTlrgW_8aotI2370IGvms19tPSujnLr9FftDNgQdS4aVG-Vr7rdFboolA0wPc4J-lg-vy9eZuu31eviaT3TLCPdzNAcp5iJGCtDCsgN1YIbSIBCJgzPBRUpxiYXRgAhmKSsUDhmQGPFY2Uom6CHQ27b5zUYDU3nlZWtr2rld9KpSv7fNFUpN24rCeE845wPCbfHBO--ewidrKugwVrVgOuDHFhlSSo42VvnB6v2LgQPxd8fguUevTygl0f0w8HNabs_-y9o9gN5BYLf</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Chodrow, Philip S</creator><creator>Veldt, Nate</creator><creator>Benson, Austin R</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5667-490X</orcidid><orcidid>https://orcid.org/0000-0002-0117-3304</orcidid></search><sort><creationdate>20210701</creationdate><title>Generative hypergraph clustering: From blockmodels to modularity</title><author>Chodrow, Philip S ; Veldt, Nate ; Benson, Austin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Network Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chodrow, Philip S</creatorcontrib><creatorcontrib>Veldt, Nate</creatorcontrib><creatorcontrib>Benson, Austin R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chodrow, Philip S</au><au>Veldt, Nate</au><au>Benson, Austin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative hypergraph clustering: From blockmodels to modularity</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>7</volume><issue>28</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Hypergraphs are a natural modeling paradigm for networked systems with multiway interactions. A standard task in network analysis is the identification of closely related or densely interconnected nodes. We propose a probabilistic generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes. Approximate maximum likelihood inference in this model leads to a clustering objective that generalizes the popular modularity objective for graphs. From this, we derive an inference algorithm that generalizes the Louvain graph community detection method, and a faster, specialized variant in which edges are expected to lie fully within clusters. Using synthetic and empirical data, we demonstrate that the specialized method is highly scalable and can detect clusters where graph-based methods fail. We also use our model to find interpretable higher-order structure in school contact networks, U.S. congressional bill cosponsorship and committees, product categories in copurchasing behavior, and hotel locations from web browsing sessions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>34233880</pmid><doi>10.1126/sciadv.abh1303</doi><orcidid>https://orcid.org/0000-0001-5667-490X</orcidid><orcidid>https://orcid.org/0000-0002-0117-3304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2021-07, Vol.7 (28) |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11559555 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Computer Science Network Science SciAdv r-articles |
title | Generative hypergraph clustering: From blockmodels to modularity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20hypergraph%20clustering:%20From%20blockmodels%20to%20modularity&rft.jtitle=Science%20advances&rft.au=Chodrow,%20Philip%20S&rft.date=2021-07-01&rft.volume=7&rft.issue=28&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abh1303&rft_dat=%3Cproquest_pubme%3E2549687515%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-d2b0803740ad1febd2c75de6e2e97d5b727800db7d7e110183fa043e24a54ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549687515&rft_id=info:pmid/34233880&rfr_iscdi=true |