Loading…
DiANNA: a web server for disulfide connectivity prediction
Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input...
Saved in:
Published in: | Nucleic acids research 2005-07, Vol.33 (suppl-2), p.W230-W232 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-f8b3587d938b81923dddea6baf9f882faea21ea5176e0094a0ecfabe6b7f90343 |
---|---|
cites | |
container_end_page | W232 |
container_issue | suppl-2 |
container_start_page | W230 |
container_title | Nucleic acids research |
container_volume | 33 |
creator | Ferrè, F. Clote, P. |
description | Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the protein's secondary structure, then PSIBLAST is run against the non-redundant SwissProt to obtain a multiple alignment of the input sequence. The predicted secondary structure and the profile arising from this alignment are used in the training phase of our neural network. Next, cysteine oxidation state is predicted, then each pair of cysteines in the protein sequence is assigned a likelihood of forming a disulfide bond—this is performed by means of a novel architecture (diresidue neural network). Finally, Rothberg's implementation of Gabow's maximum weighted matching algorithm is applied to diresidue neural network scores in order to produce the final connectivity prediction. Our novel neural network-based approach achieves results that are comparable and in some cases better than the current state-of-the-art methods. |
doi_str_mv | 10.1093/nar/gki412 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1160173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>947302241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-f8b3587d938b81923dddea6baf9f882faea21ea5176e0094a0ecfabe6b7f90343</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil2rF_8AGTz0IIzNy69JehCWbde2lOpBQbyEzMxLTTs7syYzW_vfG9mlVS89hfA-fOG9LyGvgb4Havhh7-Lh1U0QwJ6QGXDFSmEUe0pmlFNZAhV6j7xI6ZpSECDFc7IH0mgqpJmRo-Mwv7ycHxWuuMW6SBg3GAs_xKINaep8aLFohr7HZgybMN4V64htyJ-hf0meedclfLV798nX5cmXxWl58enj2WJ-UTaS8rH0uuZSV63hutZgGG_bFp2qnTdea-YdOgboJFQKKTXCUWy8q1HVlTeUC75PPmxz11O9wrbBfoyus-sYVi7e2cEF---kDz_s1bCxAIpCxXPAwS4gDj8nTKNdhdRg17kehylZVZkKOKhHIaOi4lSxRyFUUhvJTIZv_4PXwxT7fK4cRqWRwkBG77aoiUNKEf39bkDtn4ZtbthuG874zd_XeKC7SjMotyCkEX_dz128yYvyStrTb9_tuVKfF8vludX8N1_UsXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200595491</pqid></control><display><type>article</type><title>DiANNA: a web server for disulfide connectivity prediction</title><source>PubMed (Medline)</source><source>Oxford Open</source><creator>Ferrè, F. ; Clote, P.</creator><creatorcontrib>Ferrè, F. ; Clote, P.</creatorcontrib><description>Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the protein's secondary structure, then PSIBLAST is run against the non-redundant SwissProt to obtain a multiple alignment of the input sequence. The predicted secondary structure and the profile arising from this alignment are used in the training phase of our neural network. Next, cysteine oxidation state is predicted, then each pair of cysteines in the protein sequence is assigned a likelihood of forming a disulfide bond—this is performed by means of a novel architecture (diresidue neural network). Finally, Rothberg's implementation of Gabow's maximum weighted matching algorithm is applied to diresidue neural network scores in order to produce the final connectivity prediction. Our novel neural network-based approach achieves results that are comparable and in some cases better than the current state-of-the-art methods.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gki412</identifier><identifier>PMID: 15980459</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cysteine - chemistry ; Disulfides - chemistry ; Internet ; Neural Networks (Computer) ; Protein Structure, Secondary ; Proteins - chemistry ; Sequence Analysis, Protein - methods ; Software</subject><ispartof>Nucleic acids research, 2005-07, Vol.33 (suppl-2), p.W230-W232</ispartof><rights>Copyright Oxford University Press(England) Jul 1, 2005</rights><rights>The Author 2005. Published by Oxford University Press. All rights reserved 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-f8b3587d938b81923dddea6baf9f882faea21ea5176e0094a0ecfabe6b7f90343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160173/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160173/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15980459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrè, F.</creatorcontrib><creatorcontrib>Clote, P.</creatorcontrib><title>DiANNA: a web server for disulfide connectivity prediction</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the protein's secondary structure, then PSIBLAST is run against the non-redundant SwissProt to obtain a multiple alignment of the input sequence. The predicted secondary structure and the profile arising from this alignment are used in the training phase of our neural network. Next, cysteine oxidation state is predicted, then each pair of cysteines in the protein sequence is assigned a likelihood of forming a disulfide bond—this is performed by means of a novel architecture (diresidue neural network). Finally, Rothberg's implementation of Gabow's maximum weighted matching algorithm is applied to diresidue neural network scores in order to produce the final connectivity prediction. Our novel neural network-based approach achieves results that are comparable and in some cases better than the current state-of-the-art methods.</description><subject>Cysteine - chemistry</subject><subject>Disulfides - chemistry</subject><subject>Internet</subject><subject>Neural Networks (Computer)</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Software</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0c9rFDEUB_Agil2rF_8AGTz0IIzNy69JehCWbde2lOpBQbyEzMxLTTs7syYzW_vfG9mlVS89hfA-fOG9LyGvgb4Havhh7-Lh1U0QwJ6QGXDFSmEUe0pmlFNZAhV6j7xI6ZpSECDFc7IH0mgqpJmRo-Mwv7ycHxWuuMW6SBg3GAs_xKINaep8aLFohr7HZgybMN4V64htyJ-hf0meedclfLV798nX5cmXxWl58enj2WJ-UTaS8rH0uuZSV63hutZgGG_bFp2qnTdea-YdOgboJFQKKTXCUWy8q1HVlTeUC75PPmxz11O9wrbBfoyus-sYVi7e2cEF---kDz_s1bCxAIpCxXPAwS4gDj8nTKNdhdRg17kehylZVZkKOKhHIaOi4lSxRyFUUhvJTIZv_4PXwxT7fK4cRqWRwkBG77aoiUNKEf39bkDtn4ZtbthuG874zd_XeKC7SjMotyCkEX_dz128yYvyStrTb9_tuVKfF8vludX8N1_UsXs</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Ferrè, F.</creator><creator>Clote, P.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050701</creationdate><title>DiANNA: a web server for disulfide connectivity prediction</title><author>Ferrè, F. ; Clote, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-f8b3587d938b81923dddea6baf9f882faea21ea5176e0094a0ecfabe6b7f90343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cysteine - chemistry</topic><topic>Disulfides - chemistry</topic><topic>Internet</topic><topic>Neural Networks (Computer)</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrè, F.</creatorcontrib><creatorcontrib>Clote, P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrè, F.</au><au>Clote, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiANNA: a web server for disulfide connectivity prediction</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>33</volume><issue>suppl-2</issue><spage>W230</spage><epage>W232</epage><pages>W230-W232</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is performed. First, PSIPRED is run to predict the protein's secondary structure, then PSIBLAST is run against the non-redundant SwissProt to obtain a multiple alignment of the input sequence. The predicted secondary structure and the profile arising from this alignment are used in the training phase of our neural network. Next, cysteine oxidation state is predicted, then each pair of cysteines in the protein sequence is assigned a likelihood of forming a disulfide bond—this is performed by means of a novel architecture (diresidue neural network). Finally, Rothberg's implementation of Gabow's maximum weighted matching algorithm is applied to diresidue neural network scores in order to produce the final connectivity prediction. Our novel neural network-based approach achieves results that are comparable and in some cases better than the current state-of-the-art methods.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15980459</pmid><doi>10.1093/nar/gki412</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2005-07, Vol.33 (suppl-2), p.W230-W232 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1160173 |
source | PubMed (Medline); Oxford Open |
subjects | Cysteine - chemistry Disulfides - chemistry Internet Neural Networks (Computer) Protein Structure, Secondary Proteins - chemistry Sequence Analysis, Protein - methods Software |
title | DiANNA: a web server for disulfide connectivity prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiANNA:%20a%20web%20server%20for%20disulfide%20connectivity%20prediction&rft.jtitle=Nucleic%20acids%20research&rft.au=Ferre%CC%80,%20F.&rft.date=2005-07-01&rft.volume=33&rft.issue=suppl-2&rft.spage=W230&rft.epage=W232&rft.pages=W230-W232&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gki412&rft_dat=%3Cproquest_pubme%3E947302241%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-f8b3587d938b81923dddea6baf9f882faea21ea5176e0094a0ecfabe6b7f90343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200595491&rft_id=info:pmid/15980459&rfr_iscdi=true |