Loading…

Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro

Small unilamellar neutral, negatively and positively charged liposomes composed of egg phosphatidylcholine, various amounts of cholesterol and, when appropriate, phosphatidic acid or stearylamine and containing 6-carboxyfluorescein were injected into mice, incubated with mouse whole blood, plasma or...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 1980-02, Vol.186 (2), p.591-598
Main Authors: Kirby, C, Clarke, J, Gregoriadis, G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small unilamellar neutral, negatively and positively charged liposomes composed of egg phosphatidylcholine, various amounts of cholesterol and, when appropriate, phosphatidic acid or stearylamine and containing 6-carboxyfluorescein were injected into mice, incubated with mouse whole blood, plasma or serum or stored at 4 degrees C. Liposomal stability, i.e. the extent to which 6-carboxyfluorescein is retained by liposomes, was dependent on their cholesterol content. (1) Cholesterol-rich (egg phosphatidylcholine/cholesterol, 7:7 molar ratio) liposomes, regardless of surface charge, remained stable in the blood of intravenously injected animals for up to at least 400min. In addition, stability of cholesterol-rich liposomes was largely maintained in vitro in the presence of whole blood, plasma or serum for at least 90min. (2) Cholesterol-poor (egg phosphatidylcholine/cholesterol, 7:2 molar ratio) or cholesterol-free (egg phosphatidylcholine) liposomes lost very rapidly (at most within 2min) much of their stability after intravenous injection or upon contact with whole blood, plasma or serum. Whole blood and to some extent plasma were less detrimental to stability than was serum. (3) After intraperitoneal injection, neutral cholesterol-rich liposomes survived in the peritoneal cavity to enter the blood circulation in their intact form. Liposomes injected intramuscularly also entered the circulation, although with somewhat diminished stability. (4) Stability of neutral and negatively charged cholesterol-rich liposomes stored at 4 degrees C was maintained for several days, and by 53 days it had declined only moderately. Stored liposomes retained their unilamellar structure and their ability to remain stable in the blood after intravenous injection. (5) Control of liposomal stability by adjusting their cholesterol content may help in the design of liposomes for effective use in biological systems in vivo and in vitro.
ISSN:0264-6021
0306-3283
1470-8728
DOI:10.1042/bj1860591