Loading…
Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI
Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic reso...
Saved in:
Published in: | The international journal of cardiovascular imaging 2024-12, Vol.40 (12), p.2617-2629 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753 |
container_end_page | 2629 |
container_issue | 12 |
container_start_page | 2617 |
container_title | The international journal of cardiovascular imaging |
container_volume | 40 |
creator | Hatfaludi, Cosmin-Andrei Roșca, Aurelian Popescu, Andreea Bianca Chitiboi, Teodora Sharma, Puneet Benedek, Theodora Itu, Lucian Mihai |
description | Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data. |
doi_str_mv | 10.1007/s10554-024-03284-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128318210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</originalsourceid><addsrcrecordid>eNp9kV1vFSEQhonR2Fr9A14YEm-8WcvAssCVMfWrSU0To9fI155ysgtH2DU5_17sqbX1wgsCmXnmZWZehJ4DeQ2EiNMKhPO-I7QdRmXfyQfoGKTgnWRAH955H6EntW4JAcGUeoyOmOJEEZDH6Pu7EHZ4CqakmDbYrEuezRKdmaY99rEuLbrGehUqnvfZmeLjEiveNSakpeKx5BmnXGYz4brabXAtaE0NHueEP385f4oejWaq4dnNfYK-fXj_9exTd3H58fzs7UXnGB-WDoRXQ7BmZNwFQiWlztIBiOPe-nacHUflrRSGqQC-txYIFQK4IoMfBWcn6M1Bd7faOXjXuitm0rsSZ1P2Opuo72dSvNKb_FMDDCChV03h1Y1CyT_WUBc9x-rCNJkU8lp122PbpaRAGvryH3Sb15LafI3qiRw44aJR9EC5kmstYbztBoj-7aA-OKibg_raQS1b0Yu7c9yW_LGsAewA1JZKm1D-_v0f2V9aPqkd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140865057</pqid></control><display><type>article</type><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><source>Springer Link</source><creator>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</creator><creatorcontrib>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</creatorcontrib><description>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</description><identifier>ISSN: 1875-8312</identifier><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1875-8312</identifier><identifier>EISSN: 1573-0743</identifier><identifier>DOI: 10.1007/s10554-024-03284-8</identifier><identifier>PMID: 39509018</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Adult ; Algorithms ; Arrhythmia ; Automation ; Cardiac arrhythmia ; Cardiac Imaging ; Cardiology ; Case-Control Studies ; Congestive heart failure ; Consent ; Datasets ; Deep Learning ; Female ; Gadolinium ; Heart diseases ; Heart failure ; Humans ; Image Interpretation, Computer-Assisted ; Imaging ; Machine learning ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Cine ; Male ; Medicine ; Medicine & Public Health ; Middle Aged ; Myocarditis ; Myocarditis - diagnostic imaging ; Myocarditis - physiopathology ; Myocardium - pathology ; Neural networks ; Original Paper ; Patients ; Predictive Value of Tests ; Radiology ; Reproducibility of Results ; Retrospective Studies ; Young Adult</subject><ispartof>The international journal of cardiovascular imaging, 2024-12, Vol.40 (12), p.2617-2629</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39509018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatfaludi, Cosmin-Andrei</creatorcontrib><creatorcontrib>Roșca, Aurelian</creatorcontrib><creatorcontrib>Popescu, Andreea Bianca</creatorcontrib><creatorcontrib>Chitiboi, Teodora</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><creatorcontrib>Benedek, Theodora</creatorcontrib><creatorcontrib>Itu, Lucian Mihai</creatorcontrib><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><title>The international journal of cardiovascular imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Automation</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Case-Control Studies</subject><subject>Congestive heart failure</subject><subject>Consent</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Gadolinium</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Myocarditis</subject><subject>Myocarditis - diagnostic imaging</subject><subject>Myocarditis - physiopathology</subject><subject>Myocardium - pathology</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Young Adult</subject><issn>1875-8312</issn><issn>1569-5794</issn><issn>1875-8312</issn><issn>1573-0743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kV1vFSEQhonR2Fr9A14YEm-8WcvAssCVMfWrSU0To9fI155ysgtH2DU5_17sqbX1wgsCmXnmZWZehJ4DeQ2EiNMKhPO-I7QdRmXfyQfoGKTgnWRAH955H6EntW4JAcGUeoyOmOJEEZDH6Pu7EHZ4CqakmDbYrEuezRKdmaY99rEuLbrGehUqnvfZmeLjEiveNSakpeKx5BmnXGYz4brabXAtaE0NHueEP385f4oejWaq4dnNfYK-fXj_9exTd3H58fzs7UXnGB-WDoRXQ7BmZNwFQiWlztIBiOPe-nacHUflrRSGqQC-txYIFQK4IoMfBWcn6M1Bd7faOXjXuitm0rsSZ1P2Opuo72dSvNKb_FMDDCChV03h1Y1CyT_WUBc9x-rCNJkU8lp122PbpaRAGvryH3Sb15LafI3qiRw44aJR9EC5kmstYbztBoj-7aA-OKibg_raQS1b0Yu7c9yW_LGsAewA1JZKm1D-_v0f2V9aPqkd</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hatfaludi, Cosmin-Andrei</creator><creator>Roșca, Aurelian</creator><creator>Popescu, Andreea Bianca</creator><creator>Chitiboi, Teodora</creator><creator>Sharma, Puneet</creator><creator>Benedek, Theodora</creator><creator>Itu, Lucian Mihai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><author>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Automation</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Case-Control Studies</topic><topic>Congestive heart failure</topic><topic>Consent</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Gadolinium</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Myocarditis</topic><topic>Myocarditis - diagnostic imaging</topic><topic>Myocarditis - physiopathology</topic><topic>Myocardium - pathology</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatfaludi, Cosmin-Andrei</creatorcontrib><creatorcontrib>Roșca, Aurelian</creatorcontrib><creatorcontrib>Popescu, Andreea Bianca</creatorcontrib><creatorcontrib>Chitiboi, Teodora</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><creatorcontrib>Benedek, Theodora</creatorcontrib><creatorcontrib>Itu, Lucian Mihai</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The international journal of cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatfaludi, Cosmin-Andrei</au><au>Roșca, Aurelian</au><au>Popescu, Andreea Bianca</au><au>Chitiboi, Teodora</au><au>Sharma, Puneet</au><au>Benedek, Theodora</au><au>Itu, Lucian Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</atitle><jtitle>The international journal of cardiovascular imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><spage>2617</spage><epage>2629</epage><pages>2617-2629</pages><issn>1875-8312</issn><issn>1569-5794</issn><eissn>1875-8312</eissn><eissn>1573-0743</eissn><abstract>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39509018</pmid><doi>10.1007/s10554-024-03284-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-8312 |
ispartof | The international journal of cardiovascular imaging, 2024-12, Vol.40 (12), p.2617-2629 |
issn | 1875-8312 1569-5794 1875-8312 1573-0743 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618149 |
source | Springer Link |
subjects | Accuracy Adult Algorithms Arrhythmia Automation Cardiac arrhythmia Cardiac Imaging Cardiology Case-Control Studies Congestive heart failure Consent Datasets Deep Learning Female Gadolinium Heart diseases Heart failure Humans Image Interpretation, Computer-Assisted Imaging Machine learning Magnetic Resonance Imaging Magnetic Resonance Imaging, Cine Male Medicine Medicine & Public Health Middle Aged Myocarditis Myocarditis - diagnostic imaging Myocarditis - physiopathology Myocardium - pathology Neural networks Original Paper Patients Predictive Value of Tests Radiology Reproducibility of Results Retrospective Studies Young Adult |
title | Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20automatically%20distinguishes%20myocarditis%20patients%20from%20normal%20subjects%20based%20on%20MRI&rft.jtitle=The%20international%20journal%20of%20cardiovascular%20imaging&rft.au=Hatfaludi,%20Cosmin-Andrei&rft.date=2024-12-01&rft.volume=40&rft.issue=12&rft.spage=2617&rft.epage=2629&rft.pages=2617-2629&rft.issn=1875-8312&rft.eissn=1875-8312&rft_id=info:doi/10.1007/s10554-024-03284-8&rft_dat=%3Cproquest_pubme%3E3128318210%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140865057&rft_id=info:pmid/39509018&rfr_iscdi=true |