Loading…

Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI

Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic reso...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of cardiovascular imaging 2024-12, Vol.40 (12), p.2617-2629
Main Authors: Hatfaludi, Cosmin-Andrei, Roșca, Aurelian, Popescu, Andreea Bianca, Chitiboi, Teodora, Sharma, Puneet, Benedek, Theodora, Itu, Lucian Mihai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753
container_end_page 2629
container_issue 12
container_start_page 2617
container_title The international journal of cardiovascular imaging
container_volume 40
creator Hatfaludi, Cosmin-Andrei
Roșca, Aurelian
Popescu, Andreea Bianca
Chitiboi, Teodora
Sharma, Puneet
Benedek, Theodora
Itu, Lucian Mihai
description Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.
doi_str_mv 10.1007/s10554-024-03284-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128318210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</originalsourceid><addsrcrecordid>eNp9kV1vFSEQhonR2Fr9A14YEm-8WcvAssCVMfWrSU0To9fI155ysgtH2DU5_17sqbX1wgsCmXnmZWZehJ4DeQ2EiNMKhPO-I7QdRmXfyQfoGKTgnWRAH955H6EntW4JAcGUeoyOmOJEEZDH6Pu7EHZ4CqakmDbYrEuezRKdmaY99rEuLbrGehUqnvfZmeLjEiveNSakpeKx5BmnXGYz4brabXAtaE0NHueEP385f4oejWaq4dnNfYK-fXj_9exTd3H58fzs7UXnGB-WDoRXQ7BmZNwFQiWlztIBiOPe-nacHUflrRSGqQC-txYIFQK4IoMfBWcn6M1Bd7faOXjXuitm0rsSZ1P2Opuo72dSvNKb_FMDDCChV03h1Y1CyT_WUBc9x-rCNJkU8lp122PbpaRAGvryH3Sb15LafI3qiRw44aJR9EC5kmstYbztBoj-7aA-OKibg_raQS1b0Yu7c9yW_LGsAewA1JZKm1D-_v0f2V9aPqkd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140865057</pqid></control><display><type>article</type><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><source>Springer Link</source><creator>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</creator><creatorcontrib>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</creatorcontrib><description>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</description><identifier>ISSN: 1875-8312</identifier><identifier>ISSN: 1569-5794</identifier><identifier>EISSN: 1875-8312</identifier><identifier>EISSN: 1573-0743</identifier><identifier>DOI: 10.1007/s10554-024-03284-8</identifier><identifier>PMID: 39509018</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Adult ; Algorithms ; Arrhythmia ; Automation ; Cardiac arrhythmia ; Cardiac Imaging ; Cardiology ; Case-Control Studies ; Congestive heart failure ; Consent ; Datasets ; Deep Learning ; Female ; Gadolinium ; Heart diseases ; Heart failure ; Humans ; Image Interpretation, Computer-Assisted ; Imaging ; Machine learning ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Cine ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Myocarditis ; Myocarditis - diagnostic imaging ; Myocarditis - physiopathology ; Myocardium - pathology ; Neural networks ; Original Paper ; Patients ; Predictive Value of Tests ; Radiology ; Reproducibility of Results ; Retrospective Studies ; Young Adult</subject><ispartof>The international journal of cardiovascular imaging, 2024-12, Vol.40 (12), p.2617-2629</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39509018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hatfaludi, Cosmin-Andrei</creatorcontrib><creatorcontrib>Roșca, Aurelian</creatorcontrib><creatorcontrib>Popescu, Andreea Bianca</creatorcontrib><creatorcontrib>Chitiboi, Teodora</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><creatorcontrib>Benedek, Theodora</creatorcontrib><creatorcontrib>Itu, Lucian Mihai</creatorcontrib><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><title>The international journal of cardiovascular imaging</title><addtitle>Int J Cardiovasc Imaging</addtitle><addtitle>Int J Cardiovasc Imaging</addtitle><description>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Automation</subject><subject>Cardiac arrhythmia</subject><subject>Cardiac Imaging</subject><subject>Cardiology</subject><subject>Case-Control Studies</subject><subject>Congestive heart failure</subject><subject>Consent</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Gadolinium</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Myocarditis</subject><subject>Myocarditis - diagnostic imaging</subject><subject>Myocarditis - physiopathology</subject><subject>Myocardium - pathology</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Young Adult</subject><issn>1875-8312</issn><issn>1569-5794</issn><issn>1875-8312</issn><issn>1573-0743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kV1vFSEQhonR2Fr9A14YEm-8WcvAssCVMfWrSU0To9fI155ysgtH2DU5_17sqbX1wgsCmXnmZWZehJ4DeQ2EiNMKhPO-I7QdRmXfyQfoGKTgnWRAH955H6EntW4JAcGUeoyOmOJEEZDH6Pu7EHZ4CqakmDbYrEuezRKdmaY99rEuLbrGehUqnvfZmeLjEiveNSakpeKx5BmnXGYz4brabXAtaE0NHueEP385f4oejWaq4dnNfYK-fXj_9exTd3H58fzs7UXnGB-WDoRXQ7BmZNwFQiWlztIBiOPe-nacHUflrRSGqQC-txYIFQK4IoMfBWcn6M1Bd7faOXjXuitm0rsSZ1P2Opuo72dSvNKb_FMDDCChV03h1Y1CyT_WUBc9x-rCNJkU8lp122PbpaRAGvryH3Sb15LafI3qiRw44aJR9EC5kmstYbztBoj-7aA-OKibg_raQS1b0Yu7c9yW_LGsAewA1JZKm1D-_v0f2V9aPqkd</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hatfaludi, Cosmin-Andrei</creator><creator>Roșca, Aurelian</creator><creator>Popescu, Andreea Bianca</creator><creator>Chitiboi, Teodora</creator><creator>Sharma, Puneet</creator><creator>Benedek, Theodora</creator><creator>Itu, Lucian Mihai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241201</creationdate><title>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</title><author>Hatfaludi, Cosmin-Andrei ; Roșca, Aurelian ; Popescu, Andreea Bianca ; Chitiboi, Teodora ; Sharma, Puneet ; Benedek, Theodora ; Itu, Lucian Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Automation</topic><topic>Cardiac arrhythmia</topic><topic>Cardiac Imaging</topic><topic>Cardiology</topic><topic>Case-Control Studies</topic><topic>Congestive heart failure</topic><topic>Consent</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Gadolinium</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Myocarditis</topic><topic>Myocarditis - diagnostic imaging</topic><topic>Myocarditis - physiopathology</topic><topic>Myocardium - pathology</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatfaludi, Cosmin-Andrei</creatorcontrib><creatorcontrib>Roșca, Aurelian</creatorcontrib><creatorcontrib>Popescu, Andreea Bianca</creatorcontrib><creatorcontrib>Chitiboi, Teodora</creatorcontrib><creatorcontrib>Sharma, Puneet</creatorcontrib><creatorcontrib>Benedek, Theodora</creatorcontrib><creatorcontrib>Itu, Lucian Mihai</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The international journal of cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatfaludi, Cosmin-Andrei</au><au>Roșca, Aurelian</au><au>Popescu, Andreea Bianca</au><au>Chitiboi, Teodora</au><au>Sharma, Puneet</au><au>Benedek, Theodora</au><au>Itu, Lucian Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI</atitle><jtitle>The international journal of cardiovascular imaging</jtitle><stitle>Int J Cardiovasc Imaging</stitle><addtitle>Int J Cardiovasc Imaging</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><spage>2617</spage><epage>2629</epage><pages>2617-2629</pages><issn>1875-8312</issn><issn>1569-5794</issn><eissn>1875-8312</eissn><eissn>1573-0743</eissn><abstract>Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring the potential of DL in distinguishing myocarditis from normal cases on CMRI data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>39509018</pmid><doi>10.1007/s10554-024-03284-8</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1875-8312
ispartof The international journal of cardiovascular imaging, 2024-12, Vol.40 (12), p.2617-2629
issn 1875-8312
1569-5794
1875-8312
1573-0743
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618149
source Springer Link
subjects Accuracy
Adult
Algorithms
Arrhythmia
Automation
Cardiac arrhythmia
Cardiac Imaging
Cardiology
Case-Control Studies
Congestive heart failure
Consent
Datasets
Deep Learning
Female
Gadolinium
Heart diseases
Heart failure
Humans
Image Interpretation, Computer-Assisted
Imaging
Machine learning
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine
Male
Medicine
Medicine & Public Health
Middle Aged
Myocarditis
Myocarditis - diagnostic imaging
Myocarditis - physiopathology
Myocardium - pathology
Neural networks
Original Paper
Patients
Predictive Value of Tests
Radiology
Reproducibility of Results
Retrospective Studies
Young Adult
title Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20automatically%20distinguishes%20myocarditis%20patients%20from%20normal%20subjects%20based%20on%20MRI&rft.jtitle=The%20international%20journal%20of%20cardiovascular%20imaging&rft.au=Hatfaludi,%20Cosmin-Andrei&rft.date=2024-12-01&rft.volume=40&rft.issue=12&rft.spage=2617&rft.epage=2629&rft.pages=2617-2629&rft.issn=1875-8312&rft.eissn=1875-8312&rft_id=info:doi/10.1007/s10554-024-03284-8&rft_dat=%3Cproquest_pubme%3E3128318210%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-17d96ebaf35ce02822cb2610c5dbd5dbcbff9db87a39e1d4bb1027715906df753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140865057&rft_id=info:pmid/39509018&rfr_iscdi=true