Loading…

Distribution of secretory component in hepatocytes and its mode of transfer into bile

Immunoglobin A in bile and other external secretions is mostly bound to a glycoprotein known as secretory component. This glycoprotein is not synthesized by the same cells as immunoglobulin A and is not found in blood. We now report the mechanism by which secretory component reaches the bile and des...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 1980-09, Vol.190 (3), p.819-826
Main Authors: Mullock, B M, Hinton, R H, Dobrota, M, Peppard, J, Orlans, E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunoglobin A in bile and other external secretions is mostly bound to a glycoprotein known as secretory component. This glycoprotein is not synthesized by the same cells as immunoglobulin A and is not found in blood. We now report the mechanism by which secretory component reaches the bile and describe its function in immunoglobulin A transport across the hepatocyte. Fractionation of rat liver homogenates by zonal centrifugation was followed by measurement of the amounts of secretory component in the various fractions by rocket immunoelectrophoresis. Secretory component was found in two fractions. One of these was identified as containing Golgi vesicles from its isopycnic density and appearance in the electron microscope; the other contained principally fragments of the plasma membrane of the sinusoidal face of the hepatocyte, as shown by its particle size and content of marker enzymes. Only the latter fraction bound (125)I-labelled immunoglobulin A added in vitro. At 5min after intravenous injection of [(14)C]fucose, the secretory component in the Golgi fraction was labelled, but not that in the plasma membrane. The secretory component in the sinusoidal plasma membrane did, however, become labelled before the first labelled secretory component appeared in bile, about 30min after injection. We suggest that fucose is added to the newly synthesized secretory component in the Golgi apparatus. The secretory component then passes, with the other newly secreted glycoproteins, to the sinusoidal plasma membrane. There it remains bound but exposed to the blood and able to bind any polymeric immunoglobulin A present in serum. The secretory component then moves across the hepatocyte to the bile-canalicular face in association with the endocytic-shuttle vesicles which carry immunoglobulin A. Hence there is a lag before newly synthesized secretory component appears in bile.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj1900819