Loading…
The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification
ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear me...
Saved in:
Published in: | Journal of integrative plant biology 2024-12, Vol.66 (12), p.2613-2631 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2631 |
container_issue | 12 |
container_start_page | 2613 |
container_title | Journal of integrative plant biology |
container_volume | 66 |
creator | Bai, Haiyan Dai, Yanghuan Fan, Panting Zhou, Yiming Wang, Xiangying Chen, Jingjing Jiao, Yuzhe Du, Chang Huang, Zhuoxi Xie, Yuting Guo, Xiaoyu Lang, Xiaoqiang Ling, Yongqing Deng, Yizhen Liu, Qi He, Shengbo Zhang, Zhonghui |
description | ABSTRACT
In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex. |
doi_str_mv | 10.1111/jipb.13770 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11622539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154258288</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhaMK1JaWDU8QiQ2bFP8ksb1CaZXSoqFUmbBgZTn2zdSjJE6dBNRd34E35EnwTCsk2GDJ8tH15yNf-0TRG4zOcBjvt3ZszjBlDB1Ex5ilacIEEi-CzhlJBGLkKHo1TVuEKEc5OYyOqCAo5yk6jh7rO4g_l_XVt1VdFTfry7Iq1mV8_uvx57qsqqIuYzvM4JWerRviHoxVM0zxHI550Hb0TqsuyM3SqT3i2ri32rvqpogb6zYwwGSnWA0m3pX6PExnbGv1nj-NXraqm-D183oSfb0s64urZPXl4_VFsUpGiilKhBC0bTKuFc2hRUoD4FwAJ5o0HHijTUM4o4YKzhBLjTEZbnKhsVGIQGvoSfThyXdcmtCFhmH2qpOjt73yD9IpK__eGeyd3LjvEuOckIyK4PDu2cG7-wWmWfZ20tB1agC3TJLiLCUZJ5z_H0VCMMGzbIe-_QfdusUP4SmCYRp-lfCcBQo_UT9sBw9_bo2R3CVA7hIg9wmQn65vz_eK_gZtdaVv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141372867</pqid></control><display><type>article</type><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</creator><creatorcontrib>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</creatorcontrib><description>ABSTRACT
In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</description><identifier>ISSN: 1672-9072</identifier><identifier>ISSN: 1744-7909</identifier><identifier>EISSN: 1744-7909</identifier><identifier>DOI: 10.1111/jipb.13770</identifier><identifier>PMID: 39206840</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding ; biogenesis ; Biosynthesis ; Cell and Developmental Biology ; Chromatin ; Epigenetics ; Eukaryotes ; eukaryotic cells ; Fluorescence recovery after photobleaching ; Liquid phases ; liquid–liquid phase separation ; methyltransferases ; Microprocessors ; microRNA ; microRNA biogenesis ; MicroRNAs ; miRNA ; MTB ; mutants ; N6-methyladenosine ; Organelles ; Phase separation ; Photobleaching ; plant biology ; Regulation ; Regulatory mechanisms (biology) ; Ribonucleic acid ; RNA ; RNA m6A modification ; RNA modification ; RNA-mediated interference ; separation ; solubility ; Transcriptomes</subject><ispartof>Journal of integrative plant biology, 2024-12, Vol.66 (12), p.2613-2631</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3732-8010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Bai, Haiyan</creatorcontrib><creatorcontrib>Dai, Yanghuan</creatorcontrib><creatorcontrib>Fan, Panting</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Wang, Xiangying</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Jiao, Yuzhe</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Huang, Zhuoxi</creatorcontrib><creatorcontrib>Xie, Yuting</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Lang, Xiaoqiang</creatorcontrib><creatorcontrib>Ling, Yongqing</creatorcontrib><creatorcontrib>Deng, Yizhen</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>He, Shengbo</creatorcontrib><creatorcontrib>Zhang, Zhonghui</creatorcontrib><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><title>Journal of integrative plant biology</title><description>ABSTRACT
In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</description><subject>Binding</subject><subject>biogenesis</subject><subject>Biosynthesis</subject><subject>Cell and Developmental Biology</subject><subject>Chromatin</subject><subject>Epigenetics</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Liquid phases</subject><subject>liquid–liquid phase separation</subject><subject>methyltransferases</subject><subject>Microprocessors</subject><subject>microRNA</subject><subject>microRNA biogenesis</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>MTB</subject><subject>mutants</subject><subject>N6-methyladenosine</subject><subject>Organelles</subject><subject>Phase separation</subject><subject>Photobleaching</subject><subject>plant biology</subject><subject>Regulation</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA m6A modification</subject><subject>RNA modification</subject><subject>RNA-mediated interference</subject><subject>separation</subject><subject>solubility</subject><subject>Transcriptomes</subject><issn>1672-9072</issn><issn>1744-7909</issn><issn>1744-7909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFks1u1DAUhaMK1JaWDU8QiQ2bFP8ksb1CaZXSoqFUmbBgZTn2zdSjJE6dBNRd34E35EnwTCsk2GDJ8tH15yNf-0TRG4zOcBjvt3ZszjBlDB1Ex5ilacIEEi-CzhlJBGLkKHo1TVuEKEc5OYyOqCAo5yk6jh7rO4g_l_XVt1VdFTfry7Iq1mV8_uvx57qsqqIuYzvM4JWerRviHoxVM0zxHI550Hb0TqsuyM3SqT3i2ri32rvqpogb6zYwwGSnWA0m3pX6PExnbGv1nj-NXraqm-D183oSfb0s64urZPXl4_VFsUpGiilKhBC0bTKuFc2hRUoD4FwAJ5o0HHijTUM4o4YKzhBLjTEZbnKhsVGIQGvoSfThyXdcmtCFhmH2qpOjt73yD9IpK__eGeyd3LjvEuOckIyK4PDu2cG7-wWmWfZ20tB1agC3TJLiLCUZJ5z_H0VCMMGzbIe-_QfdusUP4SmCYRp-lfCcBQo_UT9sBw9_bo2R3CVA7hIg9wmQn65vz_eK_gZtdaVv</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Bai, Haiyan</creator><creator>Dai, Yanghuan</creator><creator>Fan, Panting</creator><creator>Zhou, Yiming</creator><creator>Wang, Xiangying</creator><creator>Chen, Jingjing</creator><creator>Jiao, Yuzhe</creator><creator>Du, Chang</creator><creator>Huang, Zhuoxi</creator><creator>Xie, Yuting</creator><creator>Guo, Xiaoyu</creator><creator>Lang, Xiaoqiang</creator><creator>Ling, Yongqing</creator><creator>Deng, Yizhen</creator><creator>Liu, Qi</creator><creator>He, Shengbo</creator><creator>Zhang, Zhonghui</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3732-8010</orcidid></search><sort><creationdate>202412</creationdate><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><author>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>biogenesis</topic><topic>Biosynthesis</topic><topic>Cell and Developmental Biology</topic><topic>Chromatin</topic><topic>Epigenetics</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Liquid phases</topic><topic>liquid–liquid phase separation</topic><topic>methyltransferases</topic><topic>Microprocessors</topic><topic>microRNA</topic><topic>microRNA biogenesis</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>MTB</topic><topic>mutants</topic><topic>N6-methyladenosine</topic><topic>Organelles</topic><topic>Phase separation</topic><topic>Photobleaching</topic><topic>plant biology</topic><topic>Regulation</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA m6A modification</topic><topic>RNA modification</topic><topic>RNA-mediated interference</topic><topic>separation</topic><topic>solubility</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Haiyan</creatorcontrib><creatorcontrib>Dai, Yanghuan</creatorcontrib><creatorcontrib>Fan, Panting</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Wang, Xiangying</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Jiao, Yuzhe</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Huang, Zhuoxi</creatorcontrib><creatorcontrib>Xie, Yuting</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Lang, Xiaoqiang</creatorcontrib><creatorcontrib>Ling, Yongqing</creatorcontrib><creatorcontrib>Deng, Yizhen</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>He, Shengbo</creatorcontrib><creatorcontrib>Zhang, Zhonghui</creatorcontrib><collection>Wiley-Blackwell Open Access Titles (Open Access)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of integrative plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Haiyan</au><au>Dai, Yanghuan</au><au>Fan, Panting</au><au>Zhou, Yiming</au><au>Wang, Xiangying</au><au>Chen, Jingjing</au><au>Jiao, Yuzhe</au><au>Du, Chang</au><au>Huang, Zhuoxi</au><au>Xie, Yuting</au><au>Guo, Xiaoyu</au><au>Lang, Xiaoqiang</au><au>Ling, Yongqing</au><au>Deng, Yizhen</au><au>Liu, Qi</au><au>He, Shengbo</au><au>Zhang, Zhonghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</atitle><jtitle>Journal of integrative plant biology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>66</volume><issue>12</issue><spage>2613</spage><epage>2631</epage><pages>2613-2631</pages><issn>1672-9072</issn><issn>1744-7909</issn><eissn>1744-7909</eissn><abstract>ABSTRACT
In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39206840</pmid><doi>10.1111/jipb.13770</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3732-8010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-9072 |
ispartof | Journal of integrative plant biology, 2024-12, Vol.66 (12), p.2613-2631 |
issn | 1672-9072 1744-7909 1744-7909 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11622539 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Binding biogenesis Biosynthesis Cell and Developmental Biology Chromatin Epigenetics Eukaryotes eukaryotic cells Fluorescence recovery after photobleaching Liquid phases liquid–liquid phase separation methyltransferases Microprocessors microRNA microRNA biogenesis MicroRNAs miRNA MTB mutants N6-methyladenosine Organelles Phase separation Photobleaching plant biology Regulation Regulatory mechanisms (biology) Ribonucleic acid RNA RNA m6A modification RNA modification RNA-mediated interference separation solubility Transcriptomes |
title | The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20METHYLTRANSFERASE%20B%E2%80%93SERRATE%20interaction%20mediates%20the%20reciprocal%20regulation%20of%20microRNA%20biogenesis%20and%20RNA%20m6A%20modification&rft.jtitle=Journal%20of%20integrative%20plant%20biology&rft.au=Bai,%20Haiyan&rft.date=2024-12&rft.volume=66&rft.issue=12&rft.spage=2613&rft.epage=2631&rft.pages=2613-2631&rft.issn=1672-9072&rft.eissn=1744-7909&rft_id=info:doi/10.1111/jipb.13770&rft_dat=%3Cproquest_pubme%3E3154258288%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141372867&rft_id=info:pmid/39206840&rfr_iscdi=true |