Loading…

The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification

ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of integrative plant biology 2024-12, Vol.66 (12), p.2613-2631
Main Authors: Bai, Haiyan, Dai, Yanghuan, Fan, Panting, Zhou, Yiming, Wang, Xiangying, Chen, Jingjing, Jiao, Yuzhe, Du, Chang, Huang, Zhuoxi, Xie, Yuting, Guo, Xiaoyu, Lang, Xiaoqiang, Ling, Yongqing, Deng, Yizhen, Liu, Qi, He, Shengbo, Zhang, Zhonghui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2631
container_issue 12
container_start_page 2613
container_title Journal of integrative plant biology
container_volume 66
creator Bai, Haiyan
Dai, Yanghuan
Fan, Panting
Zhou, Yiming
Wang, Xiangying
Chen, Jingjing
Jiao, Yuzhe
Du, Chang
Huang, Zhuoxi
Xie, Yuting
Guo, Xiaoyu
Lang, Xiaoqiang
Ling, Yongqing
Deng, Yizhen
Liu, Qi
He, Shengbo
Zhang, Zhonghui
description ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis. In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.
doi_str_mv 10.1111/jipb.13770
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11622539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154258288</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhaMK1JaWDU8QiQ2bFP8ksb1CaZXSoqFUmbBgZTn2zdSjJE6dBNRd34E35EnwTCsk2GDJ8tH15yNf-0TRG4zOcBjvt3ZszjBlDB1Ex5ilacIEEi-CzhlJBGLkKHo1TVuEKEc5OYyOqCAo5yk6jh7rO4g_l_XVt1VdFTfry7Iq1mV8_uvx57qsqqIuYzvM4JWerRviHoxVM0zxHI550Hb0TqsuyM3SqT3i2ri32rvqpogb6zYwwGSnWA0m3pX6PExnbGv1nj-NXraqm-D183oSfb0s64urZPXl4_VFsUpGiilKhBC0bTKuFc2hRUoD4FwAJ5o0HHijTUM4o4YKzhBLjTEZbnKhsVGIQGvoSfThyXdcmtCFhmH2qpOjt73yD9IpK__eGeyd3LjvEuOckIyK4PDu2cG7-wWmWfZ20tB1agC3TJLiLCUZJ5z_H0VCMMGzbIe-_QfdusUP4SmCYRp-lfCcBQo_UT9sBw9_bo2R3CVA7hIg9wmQn65vz_eK_gZtdaVv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141372867</pqid></control><display><type>article</type><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</creator><creatorcontrib>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</creatorcontrib><description>ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis. In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</description><identifier>ISSN: 1672-9072</identifier><identifier>ISSN: 1744-7909</identifier><identifier>EISSN: 1744-7909</identifier><identifier>DOI: 10.1111/jipb.13770</identifier><identifier>PMID: 39206840</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding ; biogenesis ; Biosynthesis ; Cell and Developmental Biology ; Chromatin ; Epigenetics ; Eukaryotes ; eukaryotic cells ; Fluorescence recovery after photobleaching ; Liquid phases ; liquid–liquid phase separation ; methyltransferases ; Microprocessors ; microRNA ; microRNA biogenesis ; MicroRNAs ; miRNA ; MTB ; mutants ; N6-methyladenosine ; Organelles ; Phase separation ; Photobleaching ; plant biology ; Regulation ; Regulatory mechanisms (biology) ; Ribonucleic acid ; RNA ; RNA m6A modification ; RNA modification ; RNA-mediated interference ; separation ; solubility ; Transcriptomes</subject><ispartof>Journal of integrative plant biology, 2024-12, Vol.66 (12), p.2613-2631</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley &amp; Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3732-8010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Bai, Haiyan</creatorcontrib><creatorcontrib>Dai, Yanghuan</creatorcontrib><creatorcontrib>Fan, Panting</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Wang, Xiangying</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Jiao, Yuzhe</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Huang, Zhuoxi</creatorcontrib><creatorcontrib>Xie, Yuting</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Lang, Xiaoqiang</creatorcontrib><creatorcontrib>Ling, Yongqing</creatorcontrib><creatorcontrib>Deng, Yizhen</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>He, Shengbo</creatorcontrib><creatorcontrib>Zhang, Zhonghui</creatorcontrib><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><title>Journal of integrative plant biology</title><description>ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis. In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</description><subject>Binding</subject><subject>biogenesis</subject><subject>Biosynthesis</subject><subject>Cell and Developmental Biology</subject><subject>Chromatin</subject><subject>Epigenetics</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Fluorescence recovery after photobleaching</subject><subject>Liquid phases</subject><subject>liquid–liquid phase separation</subject><subject>methyltransferases</subject><subject>Microprocessors</subject><subject>microRNA</subject><subject>microRNA biogenesis</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>MTB</subject><subject>mutants</subject><subject>N6-methyladenosine</subject><subject>Organelles</subject><subject>Phase separation</subject><subject>Photobleaching</subject><subject>plant biology</subject><subject>Regulation</subject><subject>Regulatory mechanisms (biology)</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA m6A modification</subject><subject>RNA modification</subject><subject>RNA-mediated interference</subject><subject>separation</subject><subject>solubility</subject><subject>Transcriptomes</subject><issn>1672-9072</issn><issn>1744-7909</issn><issn>1744-7909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFks1u1DAUhaMK1JaWDU8QiQ2bFP8ksb1CaZXSoqFUmbBgZTn2zdSjJE6dBNRd34E35EnwTCsk2GDJ8tH15yNf-0TRG4zOcBjvt3ZszjBlDB1Ex5ilacIEEi-CzhlJBGLkKHo1TVuEKEc5OYyOqCAo5yk6jh7rO4g_l_XVt1VdFTfry7Iq1mV8_uvx57qsqqIuYzvM4JWerRviHoxVM0zxHI550Hb0TqsuyM3SqT3i2ri32rvqpogb6zYwwGSnWA0m3pX6PExnbGv1nj-NXraqm-D183oSfb0s64urZPXl4_VFsUpGiilKhBC0bTKuFc2hRUoD4FwAJ5o0HHijTUM4o4YKzhBLjTEZbnKhsVGIQGvoSfThyXdcmtCFhmH2qpOjt73yD9IpK__eGeyd3LjvEuOckIyK4PDu2cG7-wWmWfZ20tB1agC3TJLiLCUZJ5z_H0VCMMGzbIe-_QfdusUP4SmCYRp-lfCcBQo_UT9sBw9_bo2R3CVA7hIg9wmQn65vz_eK_gZtdaVv</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Bai, Haiyan</creator><creator>Dai, Yanghuan</creator><creator>Fan, Panting</creator><creator>Zhou, Yiming</creator><creator>Wang, Xiangying</creator><creator>Chen, Jingjing</creator><creator>Jiao, Yuzhe</creator><creator>Du, Chang</creator><creator>Huang, Zhuoxi</creator><creator>Xie, Yuting</creator><creator>Guo, Xiaoyu</creator><creator>Lang, Xiaoqiang</creator><creator>Ling, Yongqing</creator><creator>Deng, Yizhen</creator><creator>Liu, Qi</creator><creator>He, Shengbo</creator><creator>Zhang, Zhonghui</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3732-8010</orcidid></search><sort><creationdate>202412</creationdate><title>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</title><author>Bai, Haiyan ; Dai, Yanghuan ; Fan, Panting ; Zhou, Yiming ; Wang, Xiangying ; Chen, Jingjing ; Jiao, Yuzhe ; Du, Chang ; Huang, Zhuoxi ; Xie, Yuting ; Guo, Xiaoyu ; Lang, Xiaoqiang ; Ling, Yongqing ; Deng, Yizhen ; Liu, Qi ; He, Shengbo ; Zhang, Zhonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>biogenesis</topic><topic>Biosynthesis</topic><topic>Cell and Developmental Biology</topic><topic>Chromatin</topic><topic>Epigenetics</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Fluorescence recovery after photobleaching</topic><topic>Liquid phases</topic><topic>liquid–liquid phase separation</topic><topic>methyltransferases</topic><topic>Microprocessors</topic><topic>microRNA</topic><topic>microRNA biogenesis</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>MTB</topic><topic>mutants</topic><topic>N6-methyladenosine</topic><topic>Organelles</topic><topic>Phase separation</topic><topic>Photobleaching</topic><topic>plant biology</topic><topic>Regulation</topic><topic>Regulatory mechanisms (biology)</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA m6A modification</topic><topic>RNA modification</topic><topic>RNA-mediated interference</topic><topic>separation</topic><topic>solubility</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Haiyan</creatorcontrib><creatorcontrib>Dai, Yanghuan</creatorcontrib><creatorcontrib>Fan, Panting</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Wang, Xiangying</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Jiao, Yuzhe</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Huang, Zhuoxi</creatorcontrib><creatorcontrib>Xie, Yuting</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Lang, Xiaoqiang</creatorcontrib><creatorcontrib>Ling, Yongqing</creatorcontrib><creatorcontrib>Deng, Yizhen</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>He, Shengbo</creatorcontrib><creatorcontrib>Zhang, Zhonghui</creatorcontrib><collection>Wiley-Blackwell Open Access Titles (Open Access)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of integrative plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Haiyan</au><au>Dai, Yanghuan</au><au>Fan, Panting</au><au>Zhou, Yiming</au><au>Wang, Xiangying</au><au>Chen, Jingjing</au><au>Jiao, Yuzhe</au><au>Du, Chang</au><au>Huang, Zhuoxi</au><au>Xie, Yuting</au><au>Guo, Xiaoyu</au><au>Lang, Xiaoqiang</au><au>Ling, Yongqing</au><au>Deng, Yizhen</au><au>Liu, Qi</au><au>He, Shengbo</au><au>Zhang, Zhonghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification</atitle><jtitle>Journal of integrative plant biology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>66</volume><issue>12</issue><spage>2613</spage><epage>2631</epage><pages>2613-2631</pages><issn>1672-9072</issn><issn>1744-7909</issn><eissn>1744-7909</eissn><abstract>ABSTRACT In eukaryotes, RNA N6‐methyladenosine (m6A) modification and microRNA (miRNA)‐mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid–liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)–SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri‐miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome‐wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid–liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis. In Arabidopsis, METHYLTRANSFERASE B (MTB)–SERRATE (SE) interaction links RNA m6A methylase complex and microprocessor, affecting microRNA production and m6A modification. Knockdown of MTB impairs microRNA biogenesis and loss of SE function disrupts transcriptome‐wide m6A modification. SE enhances the liquid‐liquid phase separation and solubility of the m6A methylase complex.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39206840</pmid><doi>10.1111/jipb.13770</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3732-8010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-9072
ispartof Journal of integrative plant biology, 2024-12, Vol.66 (12), p.2613-2631
issn 1672-9072
1744-7909
1744-7909
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11622539
source Wiley-Blackwell Read & Publish Collection
subjects Binding
biogenesis
Biosynthesis
Cell and Developmental Biology
Chromatin
Epigenetics
Eukaryotes
eukaryotic cells
Fluorescence recovery after photobleaching
Liquid phases
liquid–liquid phase separation
methyltransferases
Microprocessors
microRNA
microRNA biogenesis
MicroRNAs
miRNA
MTB
mutants
N6-methyladenosine
Organelles
Phase separation
Photobleaching
plant biology
Regulation
Regulatory mechanisms (biology)
Ribonucleic acid
RNA
RNA m6A modification
RNA modification
RNA-mediated interference
separation
solubility
Transcriptomes
title The METHYLTRANSFERASE B–SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20METHYLTRANSFERASE%20B%E2%80%93SERRATE%20interaction%20mediates%20the%20reciprocal%20regulation%20of%20microRNA%20biogenesis%20and%20RNA%20m6A%20modification&rft.jtitle=Journal%20of%20integrative%20plant%20biology&rft.au=Bai,%20Haiyan&rft.date=2024-12&rft.volume=66&rft.issue=12&rft.spage=2613&rft.epage=2631&rft.pages=2613-2631&rft.issn=1672-9072&rft.eissn=1744-7909&rft_id=info:doi/10.1111/jipb.13770&rft_dat=%3Cproquest_pubme%3E3154258288%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3130-9993fb58ca36ef0acee169e82c2b8e8bcdb2873d3987074ddd51b69c1da02efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141372867&rft_id=info:pmid/39206840&rfr_iscdi=true