Loading…
Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan
Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or hea...
Saved in:
Published in: | Animal science journal 2024-01, Vol.95 (1), p.e70013-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e70013 |
container_title | Animal science journal |
container_volume | 95 |
creator | Ishida, Satoka Nishiura, Akiko Yamazaki, Takeshi Abe, Hayato Nakagawa, Satoshi Nakahori, Yuka Yamaguchi, Shigeki Masuda, Yutaka Saito, Yuriko Tatebayashi, Ryoki Osawa, Takefumi Huang, Che‐Hsuan Hagiya, Koichi |
description | Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB. |
doi_str_mv | 10.1111/asj.70013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11625659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146580945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhyMEoqWw4ALIEhuQmtaOnWS8QlVVGKpKLIC15djPHc9k7GA7QHYcgTtwAw7CITgJzkypAAkv_Efve59s_4riMcEnJI9TGdcnLcaE3ikOSctwiXnF7-Y9ZayknJGD4kGM60y0HNf3iwPKG7YgtD0svl0YAypF5A1agUwopgAxHx0aAmirEmgEDsL1hDrZS6fgGBmZfn75mnyehuATWIeCTNYfI-k02tp-g358z8XVpIP_PHVjmnIdUOaMDXFu7qVKc4tDS9_HnULJlPodtPSbjbQ6-y7lIN3D4p6RfYRHN-tR8f7lxbvzZXn15tXr87OrUlHKaMmMbuuOdEQpShpFtWKtqoxRpKoVBa41kUA5NkZTzQ3XXC4wrhitSK2AdPSoeLH3DmO3Ba3ApSB7MQS7lWESXlrxd8XZlbj2HwUhTVU3Nc-GZzeG4D-MEJPY2qigz_8GfoyCEtbUC8xZndGn_6BrPwaX3zdTvFo0mM_U8z2lgo8xgLm9DcFizl7k7MUu-8w--fP6t-TvsDNwugc-2R6m_5vE2dvLvfIXQjXBNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149286095</pqid></control><display><type>article</type><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><source>Wiley</source><creator>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</creator><creatorcontrib>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</creatorcontrib><description>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</description><identifier>ISSN: 1344-3941</identifier><identifier>ISSN: 1740-0929</identifier><identifier>EISSN: 1740-0929</identifier><identifier>DOI: 10.1111/asj.70013</identifier><identifier>PMID: 39648137</identifier><language>eng</language><publisher>Australia: Blackwell Publishing Ltd</publisher><subject>3-Hydroxybutyric Acid - metabolism ; Animal lactation ; Animal models ; Animals ; Breastfeeding & lactation ; Cattle ; Cattle - metabolism ; Cattle - physiology ; Cow's milk ; Energy balance ; Energy Metabolism ; Fat metabolism ; Fats - analysis ; Fats - metabolism ; fat‐to‐protein ratio ; Female ; Heat stress ; Heat Stress Disorders - metabolism ; Heat Stress Disorders - veterinary ; Heat tolerance ; Heat-Shock Response - physiology ; Holstein ; Hot Temperature - adverse effects ; Japan ; Lactation ; Lactation - metabolism ; Lactation - physiology ; Milk ; Milk - chemistry ; Milk - metabolism ; Milk production ; Milk Proteins - analysis ; Milk Proteins - metabolism ; Protein turnover ; Proteins ; Temperature effects ; β‐hydroxybutyrate</subject><ispartof>Animal science journal, 2024-01, Vol.95 (1), p.e70013-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.</rights><rights>2024 The Author(s). Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</cites><orcidid>0000-0003-2085-2342 ; 0009-0006-4596-0015 ; 0000-0002-7347-3509 ; 0000-0001-8791-9228 ; 0000-0001-9869-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39648137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Satoka</creatorcontrib><creatorcontrib>Nishiura, Akiko</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Abe, Hayato</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nakahori, Yuka</creatorcontrib><creatorcontrib>Yamaguchi, Shigeki</creatorcontrib><creatorcontrib>Masuda, Yutaka</creatorcontrib><creatorcontrib>Saito, Yuriko</creatorcontrib><creatorcontrib>Tatebayashi, Ryoki</creatorcontrib><creatorcontrib>Osawa, Takefumi</creatorcontrib><creatorcontrib>Huang, Che‐Hsuan</creatorcontrib><creatorcontrib>Hagiya, Koichi</creatorcontrib><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><title>Animal science journal</title><addtitle>Anim Sci J</addtitle><description>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</description><subject>3-Hydroxybutyric Acid - metabolism</subject><subject>Animal lactation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Breastfeeding & lactation</subject><subject>Cattle</subject><subject>Cattle - metabolism</subject><subject>Cattle - physiology</subject><subject>Cow's milk</subject><subject>Energy balance</subject><subject>Energy Metabolism</subject><subject>Fat metabolism</subject><subject>Fats - analysis</subject><subject>Fats - metabolism</subject><subject>fat‐to‐protein ratio</subject><subject>Female</subject><subject>Heat stress</subject><subject>Heat Stress Disorders - metabolism</subject><subject>Heat Stress Disorders - veterinary</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - physiology</subject><subject>Holstein</subject><subject>Hot Temperature - adverse effects</subject><subject>Japan</subject><subject>Lactation</subject><subject>Lactation - metabolism</subject><subject>Lactation - physiology</subject><subject>Milk</subject><subject>Milk - chemistry</subject><subject>Milk - metabolism</subject><subject>Milk production</subject><subject>Milk Proteins - analysis</subject><subject>Milk Proteins - metabolism</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Temperature effects</subject><subject>β‐hydroxybutyrate</subject><issn>1344-3941</issn><issn>1740-0929</issn><issn>1740-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU9u1DAUhyMEoqWw4ALIEhuQmtaOnWS8QlVVGKpKLIC15djPHc9k7GA7QHYcgTtwAw7CITgJzkypAAkv_Efve59s_4riMcEnJI9TGdcnLcaE3ikOSctwiXnF7-Y9ZayknJGD4kGM60y0HNf3iwPKG7YgtD0svl0YAypF5A1agUwopgAxHx0aAmirEmgEDsL1hDrZS6fgGBmZfn75mnyehuATWIeCTNYfI-k02tp-g358z8XVpIP_PHVjmnIdUOaMDXFu7qVKc4tDS9_HnULJlPodtPSbjbQ6-y7lIN3D4p6RfYRHN-tR8f7lxbvzZXn15tXr87OrUlHKaMmMbuuOdEQpShpFtWKtqoxRpKoVBa41kUA5NkZTzQ3XXC4wrhitSK2AdPSoeLH3DmO3Ba3ApSB7MQS7lWESXlrxd8XZlbj2HwUhTVU3Nc-GZzeG4D-MEJPY2qigz_8GfoyCEtbUC8xZndGn_6BrPwaX3zdTvFo0mM_U8z2lgo8xgLm9DcFizl7k7MUu-8w--fP6t-TvsDNwugc-2R6m_5vE2dvLvfIXQjXBNQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ishida, Satoka</creator><creator>Nishiura, Akiko</creator><creator>Yamazaki, Takeshi</creator><creator>Abe, Hayato</creator><creator>Nakagawa, Satoshi</creator><creator>Nakahori, Yuka</creator><creator>Yamaguchi, Shigeki</creator><creator>Masuda, Yutaka</creator><creator>Saito, Yuriko</creator><creator>Tatebayashi, Ryoki</creator><creator>Osawa, Takefumi</creator><creator>Huang, Che‐Hsuan</creator><creator>Hagiya, Koichi</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2085-2342</orcidid><orcidid>https://orcid.org/0009-0006-4596-0015</orcidid><orcidid>https://orcid.org/0000-0002-7347-3509</orcidid><orcidid>https://orcid.org/0000-0001-8791-9228</orcidid><orcidid>https://orcid.org/0000-0001-9869-9400</orcidid></search><sort><creationdate>202401</creationdate><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><author>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-Hydroxybutyric Acid - metabolism</topic><topic>Animal lactation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Breastfeeding & lactation</topic><topic>Cattle</topic><topic>Cattle - metabolism</topic><topic>Cattle - physiology</topic><topic>Cow's milk</topic><topic>Energy balance</topic><topic>Energy Metabolism</topic><topic>Fat metabolism</topic><topic>Fats - analysis</topic><topic>Fats - metabolism</topic><topic>fat‐to‐protein ratio</topic><topic>Female</topic><topic>Heat stress</topic><topic>Heat Stress Disorders - metabolism</topic><topic>Heat Stress Disorders - veterinary</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - physiology</topic><topic>Holstein</topic><topic>Hot Temperature - adverse effects</topic><topic>Japan</topic><topic>Lactation</topic><topic>Lactation - metabolism</topic><topic>Lactation - physiology</topic><topic>Milk</topic><topic>Milk - chemistry</topic><topic>Milk - metabolism</topic><topic>Milk production</topic><topic>Milk Proteins - analysis</topic><topic>Milk Proteins - metabolism</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Temperature effects</topic><topic>β‐hydroxybutyrate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Satoka</creatorcontrib><creatorcontrib>Nishiura, Akiko</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Abe, Hayato</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nakahori, Yuka</creatorcontrib><creatorcontrib>Yamaguchi, Shigeki</creatorcontrib><creatorcontrib>Masuda, Yutaka</creatorcontrib><creatorcontrib>Saito, Yuriko</creatorcontrib><creatorcontrib>Tatebayashi, Ryoki</creatorcontrib><creatorcontrib>Osawa, Takefumi</creatorcontrib><creatorcontrib>Huang, Che‐Hsuan</creatorcontrib><creatorcontrib>Hagiya, Koichi</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Animal science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Satoka</au><au>Nishiura, Akiko</au><au>Yamazaki, Takeshi</au><au>Abe, Hayato</au><au>Nakagawa, Satoshi</au><au>Nakahori, Yuka</au><au>Yamaguchi, Shigeki</au><au>Masuda, Yutaka</au><au>Saito, Yuriko</au><au>Tatebayashi, Ryoki</au><au>Osawa, Takefumi</au><au>Huang, Che‐Hsuan</au><au>Hagiya, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</atitle><jtitle>Animal science journal</jtitle><addtitle>Anim Sci J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>95</volume><issue>1</issue><spage>e70013</spage><epage>n/a</epage><pages>e70013-n/a</pages><issn>1344-3941</issn><issn>1740-0929</issn><eissn>1740-0929</eissn><abstract>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</abstract><cop>Australia</cop><pub>Blackwell Publishing Ltd</pub><pmid>39648137</pmid><doi>10.1111/asj.70013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2085-2342</orcidid><orcidid>https://orcid.org/0009-0006-4596-0015</orcidid><orcidid>https://orcid.org/0000-0002-7347-3509</orcidid><orcidid>https://orcid.org/0000-0001-8791-9228</orcidid><orcidid>https://orcid.org/0000-0001-9869-9400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3941 |
ispartof | Animal science journal, 2024-01, Vol.95 (1), p.e70013-n/a |
issn | 1344-3941 1740-0929 1740-0929 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11625659 |
source | Wiley |
subjects | 3-Hydroxybutyric Acid - metabolism Animal lactation Animal models Animals Breastfeeding & lactation Cattle Cattle - metabolism Cattle - physiology Cow's milk Energy balance Energy Metabolism Fat metabolism Fats - analysis Fats - metabolism fat‐to‐protein ratio Female Heat stress Heat Stress Disorders - metabolism Heat Stress Disorders - veterinary Heat tolerance Heat-Shock Response - physiology Holstein Hot Temperature - adverse effects Japan Lactation Lactation - metabolism Lactation - physiology Milk Milk - chemistry Milk - metabolism Milk production Milk Proteins - analysis Milk Proteins - metabolism Protein turnover Proteins Temperature effects β‐hydroxybutyrate |
title | Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20heat%20stress%20on%20predicted%20energy%20balance,%20fat%E2%80%90to%E2%80%90protein%20ratio,%20and%20milk%20%CE%B2%E2%80%90hydroxybutyrate%20in%20first%E2%80%90lactation%20Holstein%20cattle%20in%20Hokkaido,%20Japan&rft.jtitle=Animal%20science%20journal&rft.au=Ishida,%20Satoka&rft.date=2024-01&rft.volume=95&rft.issue=1&rft.spage=e70013&rft.epage=n/a&rft.pages=e70013-n/a&rft.issn=1344-3941&rft.eissn=1740-0929&rft_id=info:doi/10.1111/asj.70013&rft_dat=%3Cproquest_pubme%3E3146580945%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149286095&rft_id=info:pmid/39648137&rfr_iscdi=true |