Loading…

Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan

Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or hea...

Full description

Saved in:
Bibliographic Details
Published in:Animal science journal 2024-01, Vol.95 (1), p.e70013-n/a
Main Authors: Ishida, Satoka, Nishiura, Akiko, Yamazaki, Takeshi, Abe, Hayato, Nakagawa, Satoshi, Nakahori, Yuka, Yamaguchi, Shigeki, Masuda, Yutaka, Saito, Yuriko, Tatebayashi, Ryoki, Osawa, Takefumi, Huang, Che‐Hsuan, Hagiya, Koichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3
container_end_page n/a
container_issue 1
container_start_page e70013
container_title Animal science journal
container_volume 95
creator Ishida, Satoka
Nishiura, Akiko
Yamazaki, Takeshi
Abe, Hayato
Nakagawa, Satoshi
Nakahori, Yuka
Yamaguchi, Shigeki
Masuda, Yutaka
Saito, Yuriko
Tatebayashi, Ryoki
Osawa, Takefumi
Huang, Che‐Hsuan
Hagiya, Koichi
description Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.
doi_str_mv 10.1111/asj.70013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11625659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146580945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</originalsourceid><addsrcrecordid>eNp1kU9u1DAUhyMEoqWw4ALIEhuQmtaOnWS8QlVVGKpKLIC15djPHc9k7GA7QHYcgTtwAw7CITgJzkypAAkv_Efve59s_4riMcEnJI9TGdcnLcaE3ikOSctwiXnF7-Y9ZayknJGD4kGM60y0HNf3iwPKG7YgtD0svl0YAypF5A1agUwopgAxHx0aAmirEmgEDsL1hDrZS6fgGBmZfn75mnyehuATWIeCTNYfI-k02tp-g358z8XVpIP_PHVjmnIdUOaMDXFu7qVKc4tDS9_HnULJlPodtPSbjbQ6-y7lIN3D4p6RfYRHN-tR8f7lxbvzZXn15tXr87OrUlHKaMmMbuuOdEQpShpFtWKtqoxRpKoVBa41kUA5NkZTzQ3XXC4wrhitSK2AdPSoeLH3DmO3Ba3ApSB7MQS7lWESXlrxd8XZlbj2HwUhTVU3Nc-GZzeG4D-MEJPY2qigz_8GfoyCEtbUC8xZndGn_6BrPwaX3zdTvFo0mM_U8z2lgo8xgLm9DcFizl7k7MUu-8w--fP6t-TvsDNwugc-2R6m_5vE2dvLvfIXQjXBNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149286095</pqid></control><display><type>article</type><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><source>Wiley</source><creator>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</creator><creatorcontrib>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</creatorcontrib><description>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</description><identifier>ISSN: 1344-3941</identifier><identifier>ISSN: 1740-0929</identifier><identifier>EISSN: 1740-0929</identifier><identifier>DOI: 10.1111/asj.70013</identifier><identifier>PMID: 39648137</identifier><language>eng</language><publisher>Australia: Blackwell Publishing Ltd</publisher><subject>3-Hydroxybutyric Acid - metabolism ; Animal lactation ; Animal models ; Animals ; Breastfeeding &amp; lactation ; Cattle ; Cattle - metabolism ; Cattle - physiology ; Cow's milk ; Energy balance ; Energy Metabolism ; Fat metabolism ; Fats - analysis ; Fats - metabolism ; fat‐to‐protein ratio ; Female ; Heat stress ; Heat Stress Disorders - metabolism ; Heat Stress Disorders - veterinary ; Heat tolerance ; Heat-Shock Response - physiology ; Holstein ; Hot Temperature - adverse effects ; Japan ; Lactation ; Lactation - metabolism ; Lactation - physiology ; Milk ; Milk - chemistry ; Milk - metabolism ; Milk production ; Milk Proteins - analysis ; Milk Proteins - metabolism ; Protein turnover ; Proteins ; Temperature effects ; β‐hydroxybutyrate</subject><ispartof>Animal science journal, 2024-01, Vol.95 (1), p.e70013-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Society of Animal Science.</rights><rights>2024 The Author(s). Animal Science Journal published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Society of Animal Science.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</cites><orcidid>0000-0003-2085-2342 ; 0009-0006-4596-0015 ; 0000-0002-7347-3509 ; 0000-0001-8791-9228 ; 0000-0001-9869-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39648137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Satoka</creatorcontrib><creatorcontrib>Nishiura, Akiko</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Abe, Hayato</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nakahori, Yuka</creatorcontrib><creatorcontrib>Yamaguchi, Shigeki</creatorcontrib><creatorcontrib>Masuda, Yutaka</creatorcontrib><creatorcontrib>Saito, Yuriko</creatorcontrib><creatorcontrib>Tatebayashi, Ryoki</creatorcontrib><creatorcontrib>Osawa, Takefumi</creatorcontrib><creatorcontrib>Huang, Che‐Hsuan</creatorcontrib><creatorcontrib>Hagiya, Koichi</creatorcontrib><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><title>Animal science journal</title><addtitle>Anim Sci J</addtitle><description>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</description><subject>3-Hydroxybutyric Acid - metabolism</subject><subject>Animal lactation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Breastfeeding &amp; lactation</subject><subject>Cattle</subject><subject>Cattle - metabolism</subject><subject>Cattle - physiology</subject><subject>Cow's milk</subject><subject>Energy balance</subject><subject>Energy Metabolism</subject><subject>Fat metabolism</subject><subject>Fats - analysis</subject><subject>Fats - metabolism</subject><subject>fat‐to‐protein ratio</subject><subject>Female</subject><subject>Heat stress</subject><subject>Heat Stress Disorders - metabolism</subject><subject>Heat Stress Disorders - veterinary</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - physiology</subject><subject>Holstein</subject><subject>Hot Temperature - adverse effects</subject><subject>Japan</subject><subject>Lactation</subject><subject>Lactation - metabolism</subject><subject>Lactation - physiology</subject><subject>Milk</subject><subject>Milk - chemistry</subject><subject>Milk - metabolism</subject><subject>Milk production</subject><subject>Milk Proteins - analysis</subject><subject>Milk Proteins - metabolism</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Temperature effects</subject><subject>β‐hydroxybutyrate</subject><issn>1344-3941</issn><issn>1740-0929</issn><issn>1740-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU9u1DAUhyMEoqWw4ALIEhuQmtaOnWS8QlVVGKpKLIC15djPHc9k7GA7QHYcgTtwAw7CITgJzkypAAkv_Efve59s_4riMcEnJI9TGdcnLcaE3ikOSctwiXnF7-Y9ZayknJGD4kGM60y0HNf3iwPKG7YgtD0svl0YAypF5A1agUwopgAxHx0aAmirEmgEDsL1hDrZS6fgGBmZfn75mnyehuATWIeCTNYfI-k02tp-g358z8XVpIP_PHVjmnIdUOaMDXFu7qVKc4tDS9_HnULJlPodtPSbjbQ6-y7lIN3D4p6RfYRHN-tR8f7lxbvzZXn15tXr87OrUlHKaMmMbuuOdEQpShpFtWKtqoxRpKoVBa41kUA5NkZTzQ3XXC4wrhitSK2AdPSoeLH3DmO3Ba3ApSB7MQS7lWESXlrxd8XZlbj2HwUhTVU3Nc-GZzeG4D-MEJPY2qigz_8GfoyCEtbUC8xZndGn_6BrPwaX3zdTvFo0mM_U8z2lgo8xgLm9DcFizl7k7MUu-8w--fP6t-TvsDNwugc-2R6m_5vE2dvLvfIXQjXBNQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ishida, Satoka</creator><creator>Nishiura, Akiko</creator><creator>Yamazaki, Takeshi</creator><creator>Abe, Hayato</creator><creator>Nakagawa, Satoshi</creator><creator>Nakahori, Yuka</creator><creator>Yamaguchi, Shigeki</creator><creator>Masuda, Yutaka</creator><creator>Saito, Yuriko</creator><creator>Tatebayashi, Ryoki</creator><creator>Osawa, Takefumi</creator><creator>Huang, Che‐Hsuan</creator><creator>Hagiya, Koichi</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2085-2342</orcidid><orcidid>https://orcid.org/0009-0006-4596-0015</orcidid><orcidid>https://orcid.org/0000-0002-7347-3509</orcidid><orcidid>https://orcid.org/0000-0001-8791-9228</orcidid><orcidid>https://orcid.org/0000-0001-9869-9400</orcidid></search><sort><creationdate>202401</creationdate><title>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</title><author>Ishida, Satoka ; Nishiura, Akiko ; Yamazaki, Takeshi ; Abe, Hayato ; Nakagawa, Satoshi ; Nakahori, Yuka ; Yamaguchi, Shigeki ; Masuda, Yutaka ; Saito, Yuriko ; Tatebayashi, Ryoki ; Osawa, Takefumi ; Huang, Che‐Hsuan ; Hagiya, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-Hydroxybutyric Acid - metabolism</topic><topic>Animal lactation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Breastfeeding &amp; lactation</topic><topic>Cattle</topic><topic>Cattle - metabolism</topic><topic>Cattle - physiology</topic><topic>Cow's milk</topic><topic>Energy balance</topic><topic>Energy Metabolism</topic><topic>Fat metabolism</topic><topic>Fats - analysis</topic><topic>Fats - metabolism</topic><topic>fat‐to‐protein ratio</topic><topic>Female</topic><topic>Heat stress</topic><topic>Heat Stress Disorders - metabolism</topic><topic>Heat Stress Disorders - veterinary</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - physiology</topic><topic>Holstein</topic><topic>Hot Temperature - adverse effects</topic><topic>Japan</topic><topic>Lactation</topic><topic>Lactation - metabolism</topic><topic>Lactation - physiology</topic><topic>Milk</topic><topic>Milk - chemistry</topic><topic>Milk - metabolism</topic><topic>Milk production</topic><topic>Milk Proteins - analysis</topic><topic>Milk Proteins - metabolism</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Temperature effects</topic><topic>β‐hydroxybutyrate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Satoka</creatorcontrib><creatorcontrib>Nishiura, Akiko</creatorcontrib><creatorcontrib>Yamazaki, Takeshi</creatorcontrib><creatorcontrib>Abe, Hayato</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nakahori, Yuka</creatorcontrib><creatorcontrib>Yamaguchi, Shigeki</creatorcontrib><creatorcontrib>Masuda, Yutaka</creatorcontrib><creatorcontrib>Saito, Yuriko</creatorcontrib><creatorcontrib>Tatebayashi, Ryoki</creatorcontrib><creatorcontrib>Osawa, Takefumi</creatorcontrib><creatorcontrib>Huang, Che‐Hsuan</creatorcontrib><creatorcontrib>Hagiya, Koichi</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Animal science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Satoka</au><au>Nishiura, Akiko</au><au>Yamazaki, Takeshi</au><au>Abe, Hayato</au><au>Nakagawa, Satoshi</au><au>Nakahori, Yuka</au><au>Yamaguchi, Shigeki</au><au>Masuda, Yutaka</au><au>Saito, Yuriko</au><au>Tatebayashi, Ryoki</au><au>Osawa, Takefumi</au><au>Huang, Che‐Hsuan</au><au>Hagiya, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan</atitle><jtitle>Animal science journal</jtitle><addtitle>Anim Sci J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>95</volume><issue>1</issue><spage>e70013</spage><epage>n/a</epage><pages>e70013-n/a</pages><issn>1344-3941</issn><issn>1740-0929</issn><eissn>1740-0929</eissn><abstract>Heat stress (HS) reduces dry‐matter intake and causes negative energy balance (EB) in Holstein cattle, with consequent deterioration in milk production and wellness. Therefore, the effects of HS can be detected more directly from imbalances in EB than from the consequent changes in production or health traits. EB can be monitored by metabolism‐related traits such as predicted EB (PEB), the fat‐to‐protein ratio (FPR), or β‐hydroxybutyrate (BHB) in milk. We examined the days on which HS effects on the test‐day PEB, FPR, or milk BHB were the greatest in first lactation. We collected weather records and test‐day records. We considered the fixed effects of herd‐year, test month, calving age, days in milk, temperature–humidity index (THI) from any one of test day to 14 days prior (15 models per trait), and random effects of animal and residuals in the models and compared the deviance information criterion (DIC) between models for each trait. For PEB, FPR, and milk BHB, the model gave the lowest DIC when including the effect of THI 1, 1, and 0 day before the test day. We observed that HS caused a decrease in PEB and an increase in FPR and milk BHB.</abstract><cop>Australia</cop><pub>Blackwell Publishing Ltd</pub><pmid>39648137</pmid><doi>10.1111/asj.70013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2085-2342</orcidid><orcidid>https://orcid.org/0009-0006-4596-0015</orcidid><orcidid>https://orcid.org/0000-0002-7347-3509</orcidid><orcidid>https://orcid.org/0000-0001-8791-9228</orcidid><orcidid>https://orcid.org/0000-0001-9869-9400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3941
ispartof Animal science journal, 2024-01, Vol.95 (1), p.e70013-n/a
issn 1344-3941
1740-0929
1740-0929
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11625659
source Wiley
subjects 3-Hydroxybutyric Acid - metabolism
Animal lactation
Animal models
Animals
Breastfeeding & lactation
Cattle
Cattle - metabolism
Cattle - physiology
Cow's milk
Energy balance
Energy Metabolism
Fat metabolism
Fats - analysis
Fats - metabolism
fat‐to‐protein ratio
Female
Heat stress
Heat Stress Disorders - metabolism
Heat Stress Disorders - veterinary
Heat tolerance
Heat-Shock Response - physiology
Holstein
Hot Temperature - adverse effects
Japan
Lactation
Lactation - metabolism
Lactation - physiology
Milk
Milk - chemistry
Milk - metabolism
Milk production
Milk Proteins - analysis
Milk Proteins - metabolism
Protein turnover
Proteins
Temperature effects
β‐hydroxybutyrate
title Effects of heat stress on predicted energy balance, fat‐to‐protein ratio, and milk β‐hydroxybutyrate in first‐lactation Holstein cattle in Hokkaido, Japan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20heat%20stress%20on%20predicted%20energy%20balance,%20fat%E2%80%90to%E2%80%90protein%20ratio,%20and%20milk%20%CE%B2%E2%80%90hydroxybutyrate%20in%20first%E2%80%90lactation%20Holstein%20cattle%20in%20Hokkaido,%20Japan&rft.jtitle=Animal%20science%20journal&rft.au=Ishida,%20Satoka&rft.date=2024-01&rft.volume=95&rft.issue=1&rft.spage=e70013&rft.epage=n/a&rft.pages=e70013-n/a&rft.issn=1344-3941&rft.eissn=1740-0929&rft_id=info:doi/10.1111/asj.70013&rft_dat=%3Cproquest_pubme%3E3146580945%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3343-4fd75b1b1cc316c3dc47c2ffc125c3e9dd1ae390ffd3d9f9d9a800243215ce1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149286095&rft_id=info:pmid/39648137&rfr_iscdi=true