Loading…
Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies
Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by...
Saved in:
Published in: | Molecular ecology 2024-12, Vol.33 (24), p.e17146-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63 |
container_end_page | n/a |
container_issue | 24 |
container_start_page | e17146 |
container_title | Molecular ecology |
container_volume | 33 |
creator | Mackintosh, Alexander Vila, Roger Martin, Simon H. Setter, Derek Lohse, Konrad |
description | Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N
e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions. |
doi_str_mv | 10.1111/mec.17146 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874839023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</originalsourceid><addsrcrecordid>eNp1kU9PFDEYhxuDkRU5-AVMEy5yGOi_6bQnogsqCcQLJNyaTued3W5mWmxn1P32FheJmtBLD33ep783P4TeUnJCyzkdwZ3Qhgr5Ai0ol3XFtLjbQwuiJasoUXwfvc55QwjlrK5foX3eKNJoKRdocx6xW6c4xhxHwAlsSjasYIQwZdz7n7jd4hUEmLzDXfL9hGPCwU5zsgPOMICbfAxn-DJkv1o_zBQZ_pjK_Npn3M7TBKkfPOQ36GVvhwyHj_cBuv10cbP8Ul19_Xy5_HBVOSGErDoOxPaccCU49FY1VCttiVa0qwl0sgYhrGO1crYFITtHW60pa8oI49BKfoDOdt77uR2hcyVJyWrukx9t2ppovfn3Jfi1WcXvhlLJlKxVMbx_NKT4bYY8mdFnB8NgA8Q5G6Yaobgu_xX06D90E-cUyn6GU8G4KouwQh3vKJdizgn6pzSUmIcKTanQ_K6wsO_-jv9E_umsAKc74IcfYPu8yVxfLHfKX0y-p4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142383032</pqid></control><display><type>article</type><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</creator><creatorcontrib>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</creatorcontrib><description>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N
e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17146</identifier><identifier>PMID: 37807966</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Butterflies - genetics ; Chromosome rearrangements ; Chromosomes ; Gene Rearrangement - genetics ; Genetic Drift ; Genetics, Population ; Genome, Insect ; Genomes ; genomics/proteomics ; inbreeding ; insects ; molecular evolution ; Natural selection ; natural selection and contemporary evolution ; Original ; ORIGINAL ARTICLE ; Population genetics ; population genetics ‐ empirical ; Populations ; Reproductive fitness ; Selection, Genetic</subject><ispartof>Molecular ecology, 2024-12, Vol.33 (24), p.e17146-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</citedby><cites>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</cites><orcidid>0000-0002-2447-4388 ; 0009-0009-0238-8241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37807966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackintosh, Alexander</creatorcontrib><creatorcontrib>Vila, Roger</creatorcontrib><creatorcontrib>Martin, Simon H.</creatorcontrib><creatorcontrib>Setter, Derek</creatorcontrib><creatorcontrib>Lohse, Konrad</creatorcontrib><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N
e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</description><subject>Animals</subject><subject>Butterflies - genetics</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Gene Rearrangement - genetics</subject><subject>Genetic Drift</subject><subject>Genetics, Population</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>genomics/proteomics</subject><subject>inbreeding</subject><subject>insects</subject><subject>molecular evolution</subject><subject>Natural selection</subject><subject>natural selection and contemporary evolution</subject><subject>Original</subject><subject>ORIGINAL ARTICLE</subject><subject>Population genetics</subject><subject>population genetics ‐ empirical</subject><subject>Populations</subject><subject>Reproductive fitness</subject><subject>Selection, Genetic</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU9PFDEYhxuDkRU5-AVMEy5yGOi_6bQnogsqCcQLJNyaTued3W5mWmxn1P32FheJmtBLD33ep783P4TeUnJCyzkdwZ3Qhgr5Ai0ol3XFtLjbQwuiJasoUXwfvc55QwjlrK5foX3eKNJoKRdocx6xW6c4xhxHwAlsSjasYIQwZdz7n7jd4hUEmLzDXfL9hGPCwU5zsgPOMICbfAxn-DJkv1o_zBQZ_pjK_Npn3M7TBKkfPOQ36GVvhwyHj_cBuv10cbP8Ul19_Xy5_HBVOSGErDoOxPaccCU49FY1VCttiVa0qwl0sgYhrGO1crYFITtHW60pa8oI49BKfoDOdt77uR2hcyVJyWrukx9t2ppovfn3Jfi1WcXvhlLJlKxVMbx_NKT4bYY8mdFnB8NgA8Q5G6Yaobgu_xX06D90E-cUyn6GU8G4KouwQh3vKJdizgn6pzSUmIcKTanQ_K6wsO_-jv9E_umsAKc74IcfYPu8yVxfLHfKX0y-p4g</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Mackintosh, Alexander</creator><creator>Vila, Roger</creator><creator>Martin, Simon H.</creator><creator>Setter, Derek</creator><creator>Lohse, Konrad</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2447-4388</orcidid><orcidid>https://orcid.org/0009-0009-0238-8241</orcidid></search><sort><creationdate>202412</creationdate><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><author>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Butterflies - genetics</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Gene Rearrangement - genetics</topic><topic>Genetic Drift</topic><topic>Genetics, Population</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>genomics/proteomics</topic><topic>inbreeding</topic><topic>insects</topic><topic>molecular evolution</topic><topic>Natural selection</topic><topic>natural selection and contemporary evolution</topic><topic>Original</topic><topic>ORIGINAL ARTICLE</topic><topic>Population genetics</topic><topic>population genetics ‐ empirical</topic><topic>Populations</topic><topic>Reproductive fitness</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackintosh, Alexander</creatorcontrib><creatorcontrib>Vila, Roger</creatorcontrib><creatorcontrib>Martin, Simon H.</creatorcontrib><creatorcontrib>Setter, Derek</creatorcontrib><creatorcontrib>Lohse, Konrad</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackintosh, Alexander</au><au>Vila, Roger</au><au>Martin, Simon H.</au><au>Setter, Derek</au><au>Lohse, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>33</volume><issue>24</issue><spage>e17146</spage><epage>n/a</epage><pages>e17146-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N
e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37807966</pmid><doi>10.1111/mec.17146</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2447-4388</orcidid><orcidid>https://orcid.org/0009-0009-0238-8241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2024-12, Vol.33 (24), p.e17146-n/a |
issn | 0962-1083 1365-294X 1365-294X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628658 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Butterflies - genetics Chromosome rearrangements Chromosomes Gene Rearrangement - genetics Genetic Drift Genetics, Population Genome, Insect Genomes genomics/proteomics inbreeding insects molecular evolution Natural selection natural selection and contemporary evolution Original ORIGINAL ARTICLE Population genetics population genetics ‐ empirical Populations Reproductive fitness Selection, Genetic |
title | Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20chromosome%20rearrangements%20fix%20by%20genetic%20drift%20or%20natural%20selection?%20Insights%20from%20Brenthis%20butterflies&rft.jtitle=Molecular%20ecology&rft.au=Mackintosh,%20Alexander&rft.date=2024-12&rft.volume=33&rft.issue=24&rft.spage=e17146&rft.epage=n/a&rft.pages=e17146-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17146&rft_dat=%3Cproquest_pubme%3E2874839023%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142383032&rft_id=info:pmid/37807966&rfr_iscdi=true |