Loading…

Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies

Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2024-12, Vol.33 (24), p.e17146-n/a
Main Authors: Mackintosh, Alexander, Vila, Roger, Martin, Simon H., Setter, Derek, Lohse, Konrad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63
cites cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63
container_end_page n/a
container_issue 24
container_start_page e17146
container_title Molecular ecology
container_volume 33
creator Mackintosh, Alexander
Vila, Roger
Martin, Simon H.
Setter, Derek
Lohse, Konrad
description Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.
doi_str_mv 10.1111/mec.17146
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874839023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</originalsourceid><addsrcrecordid>eNp1kU9PFDEYhxuDkRU5-AVMEy5yGOi_6bQnogsqCcQLJNyaTued3W5mWmxn1P32FheJmtBLD33ep783P4TeUnJCyzkdwZ3Qhgr5Ai0ol3XFtLjbQwuiJasoUXwfvc55QwjlrK5foX3eKNJoKRdocx6xW6c4xhxHwAlsSjasYIQwZdz7n7jd4hUEmLzDXfL9hGPCwU5zsgPOMICbfAxn-DJkv1o_zBQZ_pjK_Npn3M7TBKkfPOQ36GVvhwyHj_cBuv10cbP8Ul19_Xy5_HBVOSGErDoOxPaccCU49FY1VCttiVa0qwl0sgYhrGO1crYFITtHW60pa8oI49BKfoDOdt77uR2hcyVJyWrukx9t2ppovfn3Jfi1WcXvhlLJlKxVMbx_NKT4bYY8mdFnB8NgA8Q5G6Yaobgu_xX06D90E-cUyn6GU8G4KouwQh3vKJdizgn6pzSUmIcKTanQ_K6wsO_-jv9E_umsAKc74IcfYPu8yVxfLHfKX0y-p4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142383032</pqid></control><display><type>article</type><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</creator><creatorcontrib>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</creatorcontrib><description>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.17146</identifier><identifier>PMID: 37807966</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Butterflies - genetics ; Chromosome rearrangements ; Chromosomes ; Gene Rearrangement - genetics ; Genetic Drift ; Genetics, Population ; Genome, Insect ; Genomes ; genomics/proteomics ; inbreeding ; insects ; molecular evolution ; Natural selection ; natural selection and contemporary evolution ; Original ; ORIGINAL ARTICLE ; Population genetics ; population genetics ‐ empirical ; Populations ; Reproductive fitness ; Selection, Genetic</subject><ispartof>Molecular ecology, 2024-12, Vol.33 (24), p.e17146-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Molecular Ecology published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</citedby><cites>FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</cites><orcidid>0000-0002-2447-4388 ; 0009-0009-0238-8241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37807966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackintosh, Alexander</creatorcontrib><creatorcontrib>Vila, Roger</creatorcontrib><creatorcontrib>Martin, Simon H.</creatorcontrib><creatorcontrib>Setter, Derek</creatorcontrib><creatorcontrib>Lohse, Konrad</creatorcontrib><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</description><subject>Animals</subject><subject>Butterflies - genetics</subject><subject>Chromosome rearrangements</subject><subject>Chromosomes</subject><subject>Gene Rearrangement - genetics</subject><subject>Genetic Drift</subject><subject>Genetics, Population</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>genomics/proteomics</subject><subject>inbreeding</subject><subject>insects</subject><subject>molecular evolution</subject><subject>Natural selection</subject><subject>natural selection and contemporary evolution</subject><subject>Original</subject><subject>ORIGINAL ARTICLE</subject><subject>Population genetics</subject><subject>population genetics ‐ empirical</subject><subject>Populations</subject><subject>Reproductive fitness</subject><subject>Selection, Genetic</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU9PFDEYhxuDkRU5-AVMEy5yGOi_6bQnogsqCcQLJNyaTued3W5mWmxn1P32FheJmtBLD33ep783P4TeUnJCyzkdwZ3Qhgr5Ai0ol3XFtLjbQwuiJasoUXwfvc55QwjlrK5foX3eKNJoKRdocx6xW6c4xhxHwAlsSjasYIQwZdz7n7jd4hUEmLzDXfL9hGPCwU5zsgPOMICbfAxn-DJkv1o_zBQZ_pjK_Npn3M7TBKkfPOQ36GVvhwyHj_cBuv10cbP8Ul19_Xy5_HBVOSGErDoOxPaccCU49FY1VCttiVa0qwl0sgYhrGO1crYFITtHW60pa8oI49BKfoDOdt77uR2hcyVJyWrukx9t2ppovfn3Jfi1WcXvhlLJlKxVMbx_NKT4bYY8mdFnB8NgA8Q5G6Yaobgu_xX06D90E-cUyn6GU8G4KouwQh3vKJdizgn6pzSUmIcKTanQ_K6wsO_-jv9E_umsAKc74IcfYPu8yVxfLHfKX0y-p4g</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Mackintosh, Alexander</creator><creator>Vila, Roger</creator><creator>Martin, Simon H.</creator><creator>Setter, Derek</creator><creator>Lohse, Konrad</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2447-4388</orcidid><orcidid>https://orcid.org/0009-0009-0238-8241</orcidid></search><sort><creationdate>202412</creationdate><title>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</title><author>Mackintosh, Alexander ; Vila, Roger ; Martin, Simon H. ; Setter, Derek ; Lohse, Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Butterflies - genetics</topic><topic>Chromosome rearrangements</topic><topic>Chromosomes</topic><topic>Gene Rearrangement - genetics</topic><topic>Genetic Drift</topic><topic>Genetics, Population</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>genomics/proteomics</topic><topic>inbreeding</topic><topic>insects</topic><topic>molecular evolution</topic><topic>Natural selection</topic><topic>natural selection and contemporary evolution</topic><topic>Original</topic><topic>ORIGINAL ARTICLE</topic><topic>Population genetics</topic><topic>population genetics ‐ empirical</topic><topic>Populations</topic><topic>Reproductive fitness</topic><topic>Selection, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackintosh, Alexander</creatorcontrib><creatorcontrib>Vila, Roger</creatorcontrib><creatorcontrib>Martin, Simon H.</creatorcontrib><creatorcontrib>Setter, Derek</creatorcontrib><creatorcontrib>Lohse, Konrad</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackintosh, Alexander</au><au>Vila, Roger</au><au>Martin, Simon H.</au><au>Setter, Derek</au><au>Lohse, Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>33</volume><issue>24</issue><spage>e17146</spage><epage>n/a</epage><pages>e17146-n/a</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Large‐scale chromosome rearrangements, such as fissions and fusions, are a common feature of eukaryote evolution. They can have considerable influence on the evolution of populations, yet it remains unclear exactly how rearrangements become established and eventually fix. Rearrangements could fix by genetic drift if they are weakly deleterious or neutral, or they may instead be favoured by positive natural selection. Here, we compare genome assemblies of three closely related Brenthis butterfly species and characterize a complex history of fission and fusion rearrangements. An inferred demographic history of these species suggests that rearrangements became fixed in populations with large long‐term effective size (N e), consistent with rearrangements being selectively neutral or only very weakly underdominant. Using a recently developed analytic framework for characterizing hard selective sweeps, we find that chromosome fusions are not enriched for evidence of past sweeps compared to other regions of the genome. Nonetheless, we do infer a strong and recent selective sweep around one chromosome fusion in the B. daphne genome. Our results suggest that rearrangements in these species likely have weak absolute fitness effects and fix by genetic drift. However, one putative selective sweep raises the possibility that natural selection may sometimes play a role in the fixation of chromosome fusions.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37807966</pmid><doi>10.1111/mec.17146</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2447-4388</orcidid><orcidid>https://orcid.org/0009-0009-0238-8241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2024-12, Vol.33 (24), p.e17146-n/a
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11628658
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Butterflies - genetics
Chromosome rearrangements
Chromosomes
Gene Rearrangement - genetics
Genetic Drift
Genetics, Population
Genome, Insect
Genomes
genomics/proteomics
inbreeding
insects
molecular evolution
Natural selection
natural selection and contemporary evolution
Original
ORIGINAL ARTICLE
Population genetics
population genetics ‐ empirical
Populations
Reproductive fitness
Selection, Genetic
title Do chromosome rearrangements fix by genetic drift or natural selection? Insights from Brenthis butterflies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20chromosome%20rearrangements%20fix%20by%20genetic%20drift%20or%20natural%20selection?%20Insights%20from%20Brenthis%20butterflies&rft.jtitle=Molecular%20ecology&rft.au=Mackintosh,%20Alexander&rft.date=2024-12&rft.volume=33&rft.issue=24&rft.spage=e17146&rft.epage=n/a&rft.pages=e17146-n/a&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.17146&rft_dat=%3Cproquest_pubme%3E2874839023%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4446-d3e0af303843efa871989a0981d50ed65e44ac258cabe46dc1b99127f3023eb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142383032&rft_id=info:pmid/37807966&rfr_iscdi=true