Loading…
Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy
•Nonoptimal rATG exposure increases nonrelapse mortality, relapse, and chronic GVHD and worsens DFS in pediatric AB-TCD haploidentical HCT.•Targeting rATG dosing to a predicted exposure may improve immune reconstitution and preserve graft-versus-leukemia. [Display omitted] We hypothesized that the i...
Saved in:
Published in: | Blood advances 2024-12, Vol.8 (23), p.6003-6014 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6014 |
container_issue | 23 |
container_start_page | 6003 |
container_title | Blood advances |
container_volume | 8 |
creator | Dvorak, Christopher C. Long-Boyle, Janel R. Holbrook-Brown, Lucia Abdel-Azim, Hisham Bertaina, Alice Vatsayan, Anant Talano, Julie-An Bunin, Nancy Anderson, Eric Flower, Allyson Lalefar, Nahal Higham, Christine S. Kapoor, Neena Klein, Orly Odinakachukwu, Maryanne C. Cho, Soohee Jacobsohn, David A. Collier, Willem Pulsipher, Michael A. |
description | •Nonoptimal rATG exposure increases nonrelapse mortality, relapse, and chronic GVHD and worsens DFS in pediatric AB-TCD haploidentical HCT.•Targeting rATG dosing to a predicted exposure may improve immune reconstitution and preserve graft-versus-leukemia.
[Display omitted]
We hypothesized that the inferior disease-free survival (DFS) seen in older patients who underwent αβ-T-cell/CD19–depleted (AB-TCD) haploidentical hematopoietic cell transplantation (HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13 years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and after HCT were predicted using a validated pharmacokinetic model. Receiver operating characteristic curves were used to identify the optimal target windows for rATG exposure in terms of outcomes. We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52) with a high pre-HCT area under curve (AUC; ≥50 arbitrary units [AU] per day per milliliter) and a low post-HCT AUC ( |
doi_str_mv | 10.1182/bloodadvances.2024012670 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S247395292400449X</els_id><sourcerecordid>3084030494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-ba859ff7e9352ec482cb798315b47dfe12c89ee7fb7dfeedd319f3a53f10143b3</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVsIRKKQKyAv2XTiv55ur1BoQhIRCYSGteW2yzNG7nZje0YKK-7ASeAgOUROgqMJA1mxcln11aunelWFCD4hpKOngw_BKLNVk4Z0QjHlmNBFi59Uh5S3rBYNa5_uayoOquOUvmCMSbtgjaDPqwMmMKedoIfVt3NrQWcULIpqGFxGZ8sL9PE9ChMKm6zDCAkpmyGiZf-pvv15--u0f0vE3fcfBmYPGQyawTiVo9NorWYfnIEpO608uuyXyIaI1jCqHHxYFWRU3q2m4v3mRfXMKp_g-OE9qj6_O1_2l_X1h4ur_uy61gw3uR5U1whrWxCsoaB5R_XQio6RZuCtsUCo7gRAa4f7HxjDiLBMNcwSTDgb2FH1eqc7b4YRjC7uovJyjm5U8UYG5eTjzuTWchW2kpAFFVS0ReHVg0IMXzeQshxd0uC9miBskmS445hhLnhBux2qY0gpgt3vIVjexycfxSf_xldGX_7rcz_4J6wCvNkBUK61dRBl0g6KjHGxZChNcP_f8hvx0LWO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084030494</pqid></control><display><type>article</type><title>Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy</title><source>PubMed Central Free</source><source>Elsevier ScienceDirect Journals</source><creator>Dvorak, Christopher C. ; Long-Boyle, Janel R. ; Holbrook-Brown, Lucia ; Abdel-Azim, Hisham ; Bertaina, Alice ; Vatsayan, Anant ; Talano, Julie-An ; Bunin, Nancy ; Anderson, Eric ; Flower, Allyson ; Lalefar, Nahal ; Higham, Christine S. ; Kapoor, Neena ; Klein, Orly ; Odinakachukwu, Maryanne C. ; Cho, Soohee ; Jacobsohn, David A. ; Collier, Willem ; Pulsipher, Michael A.</creator><creatorcontrib>Dvorak, Christopher C. ; Long-Boyle, Janel R. ; Holbrook-Brown, Lucia ; Abdel-Azim, Hisham ; Bertaina, Alice ; Vatsayan, Anant ; Talano, Julie-An ; Bunin, Nancy ; Anderson, Eric ; Flower, Allyson ; Lalefar, Nahal ; Higham, Christine S. ; Kapoor, Neena ; Klein, Orly ; Odinakachukwu, Maryanne C. ; Cho, Soohee ; Jacobsohn, David A. ; Collier, Willem ; Pulsipher, Michael A.</creatorcontrib><description>•Nonoptimal rATG exposure increases nonrelapse mortality, relapse, and chronic GVHD and worsens DFS in pediatric AB-TCD haploidentical HCT.•Targeting rATG dosing to a predicted exposure may improve immune reconstitution and preserve graft-versus-leukemia.
[Display omitted]
We hypothesized that the inferior disease-free survival (DFS) seen in older patients who underwent αβ-T-cell/CD19–depleted (AB-TCD) haploidentical hematopoietic cell transplantation (HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13 years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and after HCT were predicted using a validated pharmacokinetic model. Receiver operating characteristic curves were used to identify the optimal target windows for rATG exposure in terms of outcomes. We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52) with a high pre-HCT area under curve (AUC; ≥50 arbitrary units [AU] per day per milliliter) and a low post-HCT AUC (<12 AU per day per liter); quadrant 2 (n = 47) with a low pre- and post-HCT AUC; quadrant 3 (n = 13) with a low pre-HCT and a high post-HCT AUC; and quadrant 4 (n = 51) with a high pre- and post-HCT AUC. Quadrant 1 had a 3-year DFS of 86.5%, quadrant 2 had a DFS of 64.6%, quadrant 3 had a DFS of 32.9%, and for quadrant 4 it was 48.2%. An adjusted regression analysis demonstrated additional factors that were associated with an increased hazard for worse DFS, namely minimal residual disease (MRD) positivity and cytomegalovirus (CMV) R+/D− serostatus. Nonoptimal rATG exposure exhibited the strongest effect in unadjusted and adjusted (MRD status or CMV serostatus) analyses. High exposure to rATG after HCT was associated with inferior DFS following AB-TCD haploidentical HCT for pediatric patients with hematologic malignancies. Model-based dosing of rATG to achieve optimal exposure may improve DFS. These trials were registered at www.ClinicalTrials.gov as #NCT02646839 and #NCT04337515.</description><identifier>ISSN: 2473-9529</identifier><identifier>ISSN: 2473-9537</identifier><identifier>EISSN: 2473-9537</identifier><identifier>DOI: 10.1182/bloodadvances.2024012670</identifier><identifier>PMID: 39042892</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Animals ; Antigens, CD19 - immunology ; Antilymphocyte Serum - therapeutic use ; Child ; Child, Preschool ; Female ; Hematologic Neoplasms - therapy ; Hematopoietic Stem Cell Transplantation - methods ; Humans ; Infant ; Male ; Rabbits ; Receptors, Antigen, T-Cell, alpha-beta ; Transplantation ; Transplantation, Haploidentical ; Treatment Outcome ; Young Adult</subject><ispartof>Blood advances, 2024-12, Vol.8 (23), p.6003-6014</ispartof><rights>2024 The American Society of Hematology</rights><rights>2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.</rights><rights>2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. 2024 The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3665-3102 ; 0000-0002-3729-436X ; 0000-0003-3030-8420 ; 0000-0002-6146-3952 ; 0000-0003-2993-0490 ; 0000-0001-6160-2791 ; 0000-0001-6210-2262 ; 0000-0003-1091-2567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629297/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S247395292400449X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39042892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dvorak, Christopher C.</creatorcontrib><creatorcontrib>Long-Boyle, Janel R.</creatorcontrib><creatorcontrib>Holbrook-Brown, Lucia</creatorcontrib><creatorcontrib>Abdel-Azim, Hisham</creatorcontrib><creatorcontrib>Bertaina, Alice</creatorcontrib><creatorcontrib>Vatsayan, Anant</creatorcontrib><creatorcontrib>Talano, Julie-An</creatorcontrib><creatorcontrib>Bunin, Nancy</creatorcontrib><creatorcontrib>Anderson, Eric</creatorcontrib><creatorcontrib>Flower, Allyson</creatorcontrib><creatorcontrib>Lalefar, Nahal</creatorcontrib><creatorcontrib>Higham, Christine S.</creatorcontrib><creatorcontrib>Kapoor, Neena</creatorcontrib><creatorcontrib>Klein, Orly</creatorcontrib><creatorcontrib>Odinakachukwu, Maryanne C.</creatorcontrib><creatorcontrib>Cho, Soohee</creatorcontrib><creatorcontrib>Jacobsohn, David A.</creatorcontrib><creatorcontrib>Collier, Willem</creatorcontrib><creatorcontrib>Pulsipher, Michael A.</creatorcontrib><title>Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy</title><title>Blood advances</title><addtitle>Blood Adv</addtitle><description>•Nonoptimal rATG exposure increases nonrelapse mortality, relapse, and chronic GVHD and worsens DFS in pediatric AB-TCD haploidentical HCT.•Targeting rATG dosing to a predicted exposure may improve immune reconstitution and preserve graft-versus-leukemia.
[Display omitted]
We hypothesized that the inferior disease-free survival (DFS) seen in older patients who underwent αβ-T-cell/CD19–depleted (AB-TCD) haploidentical hematopoietic cell transplantation (HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13 years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and after HCT were predicted using a validated pharmacokinetic model. Receiver operating characteristic curves were used to identify the optimal target windows for rATG exposure in terms of outcomes. We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52) with a high pre-HCT area under curve (AUC; ≥50 arbitrary units [AU] per day per milliliter) and a low post-HCT AUC (<12 AU per day per liter); quadrant 2 (n = 47) with a low pre- and post-HCT AUC; quadrant 3 (n = 13) with a low pre-HCT and a high post-HCT AUC; and quadrant 4 (n = 51) with a high pre- and post-HCT AUC. Quadrant 1 had a 3-year DFS of 86.5%, quadrant 2 had a DFS of 64.6%, quadrant 3 had a DFS of 32.9%, and for quadrant 4 it was 48.2%. An adjusted regression analysis demonstrated additional factors that were associated with an increased hazard for worse DFS, namely minimal residual disease (MRD) positivity and cytomegalovirus (CMV) R+/D− serostatus. Nonoptimal rATG exposure exhibited the strongest effect in unadjusted and adjusted (MRD status or CMV serostatus) analyses. High exposure to rATG after HCT was associated with inferior DFS following AB-TCD haploidentical HCT for pediatric patients with hematologic malignancies. Model-based dosing of rATG to achieve optimal exposure may improve DFS. These trials were registered at www.ClinicalTrials.gov as #NCT02646839 and #NCT04337515.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Animals</subject><subject>Antigens, CD19 - immunology</subject><subject>Antilymphocyte Serum - therapeutic use</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Female</subject><subject>Hematologic Neoplasms - therapy</subject><subject>Hematopoietic Stem Cell Transplantation - methods</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>Rabbits</subject><subject>Receptors, Antigen, T-Cell, alpha-beta</subject><subject>Transplantation</subject><subject>Transplantation, Haploidentical</subject><subject>Treatment Outcome</subject><subject>Young Adult</subject><issn>2473-9529</issn><issn>2473-9537</issn><issn>2473-9537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1uFDEQhVsIRKKQKyAv2XTiv55ur1BoQhIRCYSGteW2yzNG7nZje0YKK-7ASeAgOUROgqMJA1mxcln11aunelWFCD4hpKOngw_BKLNVk4Z0QjHlmNBFi59Uh5S3rBYNa5_uayoOquOUvmCMSbtgjaDPqwMmMKedoIfVt3NrQWcULIpqGFxGZ8sL9PE9ChMKm6zDCAkpmyGiZf-pvv15--u0f0vE3fcfBmYPGQyawTiVo9NorWYfnIEpO608uuyXyIaI1jCqHHxYFWRU3q2m4v3mRfXMKp_g-OE9qj6_O1_2l_X1h4ur_uy61gw3uR5U1whrWxCsoaB5R_XQio6RZuCtsUCo7gRAa4f7HxjDiLBMNcwSTDgb2FH1eqc7b4YRjC7uovJyjm5U8UYG5eTjzuTWchW2kpAFFVS0ReHVg0IMXzeQshxd0uC9miBskmS445hhLnhBux2qY0gpgt3vIVjexycfxSf_xldGX_7rcz_4J6wCvNkBUK61dRBl0g6KjHGxZChNcP_f8hvx0LWO</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Dvorak, Christopher C.</creator><creator>Long-Boyle, Janel R.</creator><creator>Holbrook-Brown, Lucia</creator><creator>Abdel-Azim, Hisham</creator><creator>Bertaina, Alice</creator><creator>Vatsayan, Anant</creator><creator>Talano, Julie-An</creator><creator>Bunin, Nancy</creator><creator>Anderson, Eric</creator><creator>Flower, Allyson</creator><creator>Lalefar, Nahal</creator><creator>Higham, Christine S.</creator><creator>Kapoor, Neena</creator><creator>Klein, Orly</creator><creator>Odinakachukwu, Maryanne C.</creator><creator>Cho, Soohee</creator><creator>Jacobsohn, David A.</creator><creator>Collier, Willem</creator><creator>Pulsipher, Michael A.</creator><general>Elsevier Inc</general><general>The American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3665-3102</orcidid><orcidid>https://orcid.org/0000-0002-3729-436X</orcidid><orcidid>https://orcid.org/0000-0003-3030-8420</orcidid><orcidid>https://orcid.org/0000-0002-6146-3952</orcidid><orcidid>https://orcid.org/0000-0003-2993-0490</orcidid><orcidid>https://orcid.org/0000-0001-6160-2791</orcidid><orcidid>https://orcid.org/0000-0001-6210-2262</orcidid><orcidid>https://orcid.org/0000-0003-1091-2567</orcidid></search><sort><creationdate>20241210</creationdate><title>Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy</title><author>Dvorak, Christopher C. ; Long-Boyle, Janel R. ; Holbrook-Brown, Lucia ; Abdel-Azim, Hisham ; Bertaina, Alice ; Vatsayan, Anant ; Talano, Julie-An ; Bunin, Nancy ; Anderson, Eric ; Flower, Allyson ; Lalefar, Nahal ; Higham, Christine S. ; Kapoor, Neena ; Klein, Orly ; Odinakachukwu, Maryanne C. ; Cho, Soohee ; Jacobsohn, David A. ; Collier, Willem ; Pulsipher, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-ba859ff7e9352ec482cb798315b47dfe12c89ee7fb7dfeedd319f3a53f10143b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Animals</topic><topic>Antigens, CD19 - immunology</topic><topic>Antilymphocyte Serum - therapeutic use</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Female</topic><topic>Hematologic Neoplasms - therapy</topic><topic>Hematopoietic Stem Cell Transplantation - methods</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>Rabbits</topic><topic>Receptors, Antigen, T-Cell, alpha-beta</topic><topic>Transplantation</topic><topic>Transplantation, Haploidentical</topic><topic>Treatment Outcome</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvorak, Christopher C.</creatorcontrib><creatorcontrib>Long-Boyle, Janel R.</creatorcontrib><creatorcontrib>Holbrook-Brown, Lucia</creatorcontrib><creatorcontrib>Abdel-Azim, Hisham</creatorcontrib><creatorcontrib>Bertaina, Alice</creatorcontrib><creatorcontrib>Vatsayan, Anant</creatorcontrib><creatorcontrib>Talano, Julie-An</creatorcontrib><creatorcontrib>Bunin, Nancy</creatorcontrib><creatorcontrib>Anderson, Eric</creatorcontrib><creatorcontrib>Flower, Allyson</creatorcontrib><creatorcontrib>Lalefar, Nahal</creatorcontrib><creatorcontrib>Higham, Christine S.</creatorcontrib><creatorcontrib>Kapoor, Neena</creatorcontrib><creatorcontrib>Klein, Orly</creatorcontrib><creatorcontrib>Odinakachukwu, Maryanne C.</creatorcontrib><creatorcontrib>Cho, Soohee</creatorcontrib><creatorcontrib>Jacobsohn, David A.</creatorcontrib><creatorcontrib>Collier, Willem</creatorcontrib><creatorcontrib>Pulsipher, Michael A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvorak, Christopher C.</au><au>Long-Boyle, Janel R.</au><au>Holbrook-Brown, Lucia</au><au>Abdel-Azim, Hisham</au><au>Bertaina, Alice</au><au>Vatsayan, Anant</au><au>Talano, Julie-An</au><au>Bunin, Nancy</au><au>Anderson, Eric</au><au>Flower, Allyson</au><au>Lalefar, Nahal</au><au>Higham, Christine S.</au><au>Kapoor, Neena</au><au>Klein, Orly</au><au>Odinakachukwu, Maryanne C.</au><au>Cho, Soohee</au><au>Jacobsohn, David A.</au><au>Collier, Willem</au><au>Pulsipher, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy</atitle><jtitle>Blood advances</jtitle><addtitle>Blood Adv</addtitle><date>2024-12-10</date><risdate>2024</risdate><volume>8</volume><issue>23</issue><spage>6003</spage><epage>6014</epage><pages>6003-6014</pages><issn>2473-9529</issn><issn>2473-9537</issn><eissn>2473-9537</eissn><abstract>•Nonoptimal rATG exposure increases nonrelapse mortality, relapse, and chronic GVHD and worsens DFS in pediatric AB-TCD haploidentical HCT.•Targeting rATG dosing to a predicted exposure may improve immune reconstitution and preserve graft-versus-leukemia.
[Display omitted]
We hypothesized that the inferior disease-free survival (DFS) seen in older patients who underwent αβ-T-cell/CD19–depleted (AB-TCD) haploidentical hematopoietic cell transplantation (HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13 years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and after HCT were predicted using a validated pharmacokinetic model. Receiver operating characteristic curves were used to identify the optimal target windows for rATG exposure in terms of outcomes. We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52) with a high pre-HCT area under curve (AUC; ≥50 arbitrary units [AU] per day per milliliter) and a low post-HCT AUC (<12 AU per day per liter); quadrant 2 (n = 47) with a low pre- and post-HCT AUC; quadrant 3 (n = 13) with a low pre-HCT and a high post-HCT AUC; and quadrant 4 (n = 51) with a high pre- and post-HCT AUC. Quadrant 1 had a 3-year DFS of 86.5%, quadrant 2 had a DFS of 64.6%, quadrant 3 had a DFS of 32.9%, and for quadrant 4 it was 48.2%. An adjusted regression analysis demonstrated additional factors that were associated with an increased hazard for worse DFS, namely minimal residual disease (MRD) positivity and cytomegalovirus (CMV) R+/D− serostatus. Nonoptimal rATG exposure exhibited the strongest effect in unadjusted and adjusted (MRD status or CMV serostatus) analyses. High exposure to rATG after HCT was associated with inferior DFS following AB-TCD haploidentical HCT for pediatric patients with hematologic malignancies. Model-based dosing of rATG to achieve optimal exposure may improve DFS. These trials were registered at www.ClinicalTrials.gov as #NCT02646839 and #NCT04337515.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39042892</pmid><doi>10.1182/bloodadvances.2024012670</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3665-3102</orcidid><orcidid>https://orcid.org/0000-0002-3729-436X</orcidid><orcidid>https://orcid.org/0000-0003-3030-8420</orcidid><orcidid>https://orcid.org/0000-0002-6146-3952</orcidid><orcidid>https://orcid.org/0000-0003-2993-0490</orcidid><orcidid>https://orcid.org/0000-0001-6160-2791</orcidid><orcidid>https://orcid.org/0000-0001-6210-2262</orcidid><orcidid>https://orcid.org/0000-0003-1091-2567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-9529 |
ispartof | Blood advances, 2024-12, Vol.8 (23), p.6003-6014 |
issn | 2473-9529 2473-9537 2473-9537 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629297 |
source | PubMed Central Free; Elsevier ScienceDirect Journals |
subjects | Adolescent Adult Animals Antigens, CD19 - immunology Antilymphocyte Serum - therapeutic use Child Child, Preschool Female Hematologic Neoplasms - therapy Hematopoietic Stem Cell Transplantation - methods Humans Infant Male Rabbits Receptors, Antigen, T-Cell, alpha-beta Transplantation Transplantation, Haploidentical Treatment Outcome Young Adult |
title | Effect of rabbit ATG PK on outcomes after TCR-αβ/CD19–depleted pediatric haploidentical HCT for hematologic malignancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20rabbit%20ATG%20PK%20on%20outcomes%20after%20TCR-%CE%B1%CE%B2/CD19%E2%80%93depleted%20pediatric%20haploidentical%20HCT%20for%20hematologic%20malignancy&rft.jtitle=Blood%20advances&rft.au=Dvorak,%20Christopher%20C.&rft.date=2024-12-10&rft.volume=8&rft.issue=23&rft.spage=6003&rft.epage=6014&rft.pages=6003-6014&rft.issn=2473-9529&rft.eissn=2473-9537&rft_id=info:doi/10.1182/bloodadvances.2024012670&rft_dat=%3Cproquest_pubme%3E3084030494%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-ba859ff7e9352ec482cb798315b47dfe12c89ee7fb7dfeedd319f3a53f10143b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084030494&rft_id=info:pmid/39042892&rfr_iscdi=true |