Loading…

Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy

The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic popla...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2016-01, Vol.14 (1), p.299-312
Main Authors: Castro‐Rodríguez, Vanessa, García‐Gutiérrez, Angel, Canales, Javier, Cañas, Rafael A, Kirby, Edward G, Avila, Concepción, Cánovas, Francisco M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63
cites cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63
container_end_page 312
container_issue 1
container_start_page 299
container_title Plant biotechnology journal
container_volume 14
creator Castro‐Rodríguez, Vanessa
García‐Gutiérrez, Angel
Canales, Javier
Cañas, Rafael A
Kirby, Edward G
Avila, Concepción
Cánovas, Francisco M
description The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.
doi_str_mv 10.1111/pbi.12384
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760902519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</originalsourceid><addsrcrecordid>eNqFkl9PFDEUxSdGI4g--AW0iS_ysHD7v_NklCiSkEiiPPjUdGbu7JZ0p0M7i9lvb5eFjZAY-tI2_fX03tNTVW8pHNEyjsfGH1HGjXhW7VOh9EwryZ7v1kLsVa9yvgJgVEn1stpjsmacg9mvfl_EMbhEpoSYSR8TGRfrKSZcYufd5ONAYk8Wfr4gAW8w5M128FNyExI3dMSNY_DtLZmJH0jjIw6Y5uvX1YvehYxv7uaD6vLb118n32fnP07PTj6fz1oljZhp4KblDDuQjeRSmU4ZqpgGajojNRcSwDRcia6lVPRGctdwpBKd5lJ3ih9Un7a646opRbc4lOKCHZNfurS20Xn78GTwCzuPN5aWZ2oDsih8vFNI8XqFebJLn1sMwQ0YV9lSAyCMENI8jWqtlFC0dPU0qqAGJmld0A-P0Ku4SkNxzdIaNmZoJgp1uKXaFHNO2O96pGA3ObAlB_Y2B4V9968pO_L-4wtwvAX--IDr_yvZiy9n95Lvtzd6F62bJ5_t5U8GVAFQZpjR_C_ZRMPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906270724</pqid></control><display><type>article</type><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><source>Wiley Online Library Open Access</source><creator>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</creator><creatorcontrib>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</creatorcontrib><description>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12384</identifier><identifier>PMID: 25923308</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Adaptation ; Assimilation ; Biodegradation, Environmental - drug effects ; bioenergy ; Biofuels ; Biomass ; biomass production ; Biosynthesis ; Carbohydrate Metabolism - drug effects ; Carbohydrate Metabolism - genetics ; Carbon - metabolism ; Cell walls ; Cellulose ; Chlorophyll ; Chlorophyll - metabolism ; Crop yield ; Crops ; Deciduous trees ; Efficiency ; feedstocks ; Fertilizer application ; Fertilizers ; Fructose ; Gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; gene overexpression ; Genes ; Glucose ; Glutamate-ammonia ligase ; Glutamate-Ammonia Ligase - metabolism ; Glutamine ; glutamine synthetase ; Leaves ; Lignin - metabolism ; nitrate fertilizers ; nitrate pollution ; Nitrates ; Nitrates - metabolism ; Nitrogen ; Nitrogen - metabolism ; Nitrogen - pharmacology ; nutrient use efficiency ; Phenotype ; Photosynthesis ; Phytoremediation ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants (organisms) ; Plants, Genetically Modified ; Pollution ; Poplar ; Populus ; Populus - drug effects ; Populus - genetics ; Populus - growth &amp; development ; Populus - metabolism ; Proteins ; Raw materials ; Renewable energy ; Reproducibility of Results ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Solubility ; Sucrose ; Sugar ; Surface water ; Transcription ; transcriptome ; Transcriptome - genetics ; Transgenic ; Transgenic plants ; transgenic trees ; Trees ; Trees - drug effects ; Trees - genetics ; Trees - growth &amp; development ; Trees - metabolism</subject><ispartof>Plant biotechnology journal, 2016-01, Vol.14 (1), p.299-312</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</citedby><cites>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</cites><orcidid>0000-0001-9727-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1906270724/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1906270724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,74998</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12384$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25923308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro‐Rodríguez, Vanessa</creatorcontrib><creatorcontrib>García‐Gutiérrez, Angel</creatorcontrib><creatorcontrib>Canales, Javier</creatorcontrib><creatorcontrib>Cañas, Rafael A</creatorcontrib><creatorcontrib>Kirby, Edward G</creatorcontrib><creatorcontrib>Avila, Concepción</creatorcontrib><creatorcontrib>Cánovas, Francisco M</creatorcontrib><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</description><subject>Adaptation</subject><subject>Assimilation</subject><subject>Biodegradation, Environmental - drug effects</subject><subject>bioenergy</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biosynthesis</subject><subject>Carbohydrate Metabolism - drug effects</subject><subject>Carbohydrate Metabolism - genetics</subject><subject>Carbon - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Deciduous trees</subject><subject>Efficiency</subject><subject>feedstocks</subject><subject>Fertilizer application</subject><subject>Fertilizers</subject><subject>Fructose</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glutamate-ammonia ligase</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Glutamine</subject><subject>glutamine synthetase</subject><subject>Leaves</subject><subject>Lignin - metabolism</subject><subject>nitrate fertilizers</subject><subject>nitrate pollution</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen - pharmacology</subject><subject>nutrient use efficiency</subject><subject>Phenotype</subject><subject>Photosynthesis</subject><subject>Phytoremediation</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants (organisms)</subject><subject>Plants, Genetically Modified</subject><subject>Pollution</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus - drug effects</subject><subject>Populus - genetics</subject><subject>Populus - growth &amp; development</subject><subject>Populus - metabolism</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Renewable energy</subject><subject>Reproducibility of Results</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Solubility</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Surface water</subject><subject>Transcription</subject><subject>transcriptome</subject><subject>Transcriptome - genetics</subject><subject>Transgenic</subject><subject>Transgenic plants</subject><subject>transgenic trees</subject><subject>Trees</subject><subject>Trees - drug effects</subject><subject>Trees - genetics</subject><subject>Trees - growth &amp; development</subject><subject>Trees - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkl9PFDEUxSdGI4g--AW0iS_ysHD7v_NklCiSkEiiPPjUdGbu7JZ0p0M7i9lvb5eFjZAY-tI2_fX03tNTVW8pHNEyjsfGH1HGjXhW7VOh9EwryZ7v1kLsVa9yvgJgVEn1stpjsmacg9mvfl_EMbhEpoSYSR8TGRfrKSZcYufd5ONAYk8Wfr4gAW8w5M128FNyExI3dMSNY_DtLZmJH0jjIw6Y5uvX1YvehYxv7uaD6vLb118n32fnP07PTj6fz1oljZhp4KblDDuQjeRSmU4ZqpgGajojNRcSwDRcia6lVPRGctdwpBKd5lJ3ih9Un7a646opRbc4lOKCHZNfurS20Xn78GTwCzuPN5aWZ2oDsih8vFNI8XqFebJLn1sMwQ0YV9lSAyCMENI8jWqtlFC0dPU0qqAGJmld0A-P0Ku4SkNxzdIaNmZoJgp1uKXaFHNO2O96pGA3ObAlB_Y2B4V9968pO_L-4wtwvAX--IDr_yvZiy9n95Lvtzd6F62bJ5_t5U8GVAFQZpjR_C_ZRMPc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Castro‐Rodríguez, Vanessa</creator><creator>García‐Gutiérrez, Angel</creator><creator>Canales, Javier</creator><creator>Cañas, Rafael A</creator><creator>Kirby, Edward G</creator><creator>Avila, Concepción</creator><creator>Cánovas, Francisco M</creator><general>Blackwell Pub</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TV</scope><scope>C1K</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9727-5585</orcidid></search><sort><creationdate>201601</creationdate><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><author>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Assimilation</topic><topic>Biodegradation, Environmental - drug effects</topic><topic>bioenergy</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biosynthesis</topic><topic>Carbohydrate Metabolism - drug effects</topic><topic>Carbohydrate Metabolism - genetics</topic><topic>Carbon - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Deciduous trees</topic><topic>Efficiency</topic><topic>feedstocks</topic><topic>Fertilizer application</topic><topic>Fertilizers</topic><topic>Fructose</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glutamate-ammonia ligase</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Glutamine</topic><topic>glutamine synthetase</topic><topic>Leaves</topic><topic>Lignin - metabolism</topic><topic>nitrate fertilizers</topic><topic>nitrate pollution</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen - pharmacology</topic><topic>nutrient use efficiency</topic><topic>Phenotype</topic><topic>Photosynthesis</topic><topic>Phytoremediation</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants (organisms)</topic><topic>Plants, Genetically Modified</topic><topic>Pollution</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus - drug effects</topic><topic>Populus - genetics</topic><topic>Populus - growth &amp; development</topic><topic>Populus - metabolism</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Renewable energy</topic><topic>Reproducibility of Results</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Solubility</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Surface water</topic><topic>Transcription</topic><topic>transcriptome</topic><topic>Transcriptome - genetics</topic><topic>Transgenic</topic><topic>Transgenic plants</topic><topic>transgenic trees</topic><topic>Trees</topic><topic>Trees - drug effects</topic><topic>Trees - genetics</topic><topic>Trees - growth &amp; development</topic><topic>Trees - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro‐Rodríguez, Vanessa</creatorcontrib><creatorcontrib>García‐Gutiérrez, Angel</creatorcontrib><creatorcontrib>Canales, Javier</creatorcontrib><creatorcontrib>Cañas, Rafael A</creatorcontrib><creatorcontrib>Kirby, Edward G</creatorcontrib><creatorcontrib>Avila, Concepción</creatorcontrib><creatorcontrib>Cánovas, Francisco M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castro‐Rodríguez, Vanessa</au><au>García‐Gutiérrez, Angel</au><au>Canales, Javier</au><au>Cañas, Rafael A</au><au>Kirby, Edward G</au><au>Avila, Concepción</au><au>Cánovas, Francisco M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2016-01</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>299</spage><epage>312</epage><pages>299-312</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25923308</pmid><doi>10.1111/pbi.12384</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9727-5585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2016-01, Vol.14 (1), p.299-312
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629805
source Wiley Online Library Open Access
subjects Adaptation
Assimilation
Biodegradation, Environmental - drug effects
bioenergy
Biofuels
Biomass
biomass production
Biosynthesis
Carbohydrate Metabolism - drug effects
Carbohydrate Metabolism - genetics
Carbon - metabolism
Cell walls
Cellulose
Chlorophyll
Chlorophyll - metabolism
Crop yield
Crops
Deciduous trees
Efficiency
feedstocks
Fertilizer application
Fertilizers
Fructose
Gene expression
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Plant - drug effects
gene overexpression
Genes
Glucose
Glutamate-ammonia ligase
Glutamate-Ammonia Ligase - metabolism
Glutamine
glutamine synthetase
Leaves
Lignin - metabolism
nitrate fertilizers
nitrate pollution
Nitrates
Nitrates - metabolism
Nitrogen
Nitrogen - metabolism
Nitrogen - pharmacology
nutrient use efficiency
Phenotype
Photosynthesis
Phytoremediation
Plant Proteins - genetics
Plant Proteins - metabolism
Plants (organisms)
Plants, Genetically Modified
Pollution
Poplar
Populus
Populus - drug effects
Populus - genetics
Populus - growth & development
Populus - metabolism
Proteins
Raw materials
Renewable energy
Reproducibility of Results
RNA, Messenger - genetics
RNA, Messenger - metabolism
Solubility
Sucrose
Sugar
Surface water
Transcription
transcriptome
Transcriptome - genetics
Transgenic
Transgenic plants
transgenic trees
Trees
Trees - drug effects
Trees - genetics
Trees - growth & development
Trees - metabolism
title Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poplar%20trees%20for%20phytoremediation%20of%20high%20levels%20of%20nitrate%20and%20applications%20in%20bioenergy&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Castro%E2%80%90Rodr%C3%ADguez,%20Vanessa&rft.date=2016-01&rft.volume=14&rft.issue=1&rft.spage=299&rft.epage=312&rft.pages=299-312&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12384&rft_dat=%3Cproquest_24P%3E1760902519%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906270724&rft_id=info:pmid/25923308&rfr_iscdi=true