Loading…
Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy
The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic popla...
Saved in:
Published in: | Plant biotechnology journal 2016-01, Vol.14 (1), p.299-312 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63 |
container_end_page | 312 |
container_issue | 1 |
container_start_page | 299 |
container_title | Plant biotechnology journal |
container_volume | 14 |
creator | Castro‐Rodríguez, Vanessa García‐Gutiérrez, Angel Canales, Javier Cañas, Rafael A Kirby, Edward G Avila, Concepción Cánovas, Francisco M |
description | The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution. |
doi_str_mv | 10.1111/pbi.12384 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760902519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</originalsourceid><addsrcrecordid>eNqFkl9PFDEUxSdGI4g--AW0iS_ysHD7v_NklCiSkEiiPPjUdGbu7JZ0p0M7i9lvb5eFjZAY-tI2_fX03tNTVW8pHNEyjsfGH1HGjXhW7VOh9EwryZ7v1kLsVa9yvgJgVEn1stpjsmacg9mvfl_EMbhEpoSYSR8TGRfrKSZcYufd5ONAYk8Wfr4gAW8w5M128FNyExI3dMSNY_DtLZmJH0jjIw6Y5uvX1YvehYxv7uaD6vLb118n32fnP07PTj6fz1oljZhp4KblDDuQjeRSmU4ZqpgGajojNRcSwDRcia6lVPRGctdwpBKd5lJ3ih9Un7a646opRbc4lOKCHZNfurS20Xn78GTwCzuPN5aWZ2oDsih8vFNI8XqFebJLn1sMwQ0YV9lSAyCMENI8jWqtlFC0dPU0qqAGJmld0A-P0Ku4SkNxzdIaNmZoJgp1uKXaFHNO2O96pGA3ObAlB_Y2B4V9968pO_L-4wtwvAX--IDr_yvZiy9n95Lvtzd6F62bJ5_t5U8GVAFQZpjR_C_ZRMPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906270724</pqid></control><display><type>article</type><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><source>Wiley Online Library Open Access</source><creator>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</creator><creatorcontrib>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</creatorcontrib><description>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12384</identifier><identifier>PMID: 25923308</identifier><language>eng</language><publisher>England: Blackwell Pub</publisher><subject>Adaptation ; Assimilation ; Biodegradation, Environmental - drug effects ; bioenergy ; Biofuels ; Biomass ; biomass production ; Biosynthesis ; Carbohydrate Metabolism - drug effects ; Carbohydrate Metabolism - genetics ; Carbon - metabolism ; Cell walls ; Cellulose ; Chlorophyll ; Chlorophyll - metabolism ; Crop yield ; Crops ; Deciduous trees ; Efficiency ; feedstocks ; Fertilizer application ; Fertilizers ; Fructose ; Gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; gene overexpression ; Genes ; Glucose ; Glutamate-ammonia ligase ; Glutamate-Ammonia Ligase - metabolism ; Glutamine ; glutamine synthetase ; Leaves ; Lignin - metabolism ; nitrate fertilizers ; nitrate pollution ; Nitrates ; Nitrates - metabolism ; Nitrogen ; Nitrogen - metabolism ; Nitrogen - pharmacology ; nutrient use efficiency ; Phenotype ; Photosynthesis ; Phytoremediation ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants (organisms) ; Plants, Genetically Modified ; Pollution ; Poplar ; Populus ; Populus - drug effects ; Populus - genetics ; Populus - growth & development ; Populus - metabolism ; Proteins ; Raw materials ; Renewable energy ; Reproducibility of Results ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Solubility ; Sucrose ; Sugar ; Surface water ; Transcription ; transcriptome ; Transcriptome - genetics ; Transgenic ; Transgenic plants ; transgenic trees ; Trees ; Trees - drug effects ; Trees - genetics ; Trees - growth & development ; Trees - metabolism</subject><ispartof>Plant biotechnology journal, 2016-01, Vol.14 (1), p.299-312</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</citedby><cites>FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</cites><orcidid>0000-0001-9727-5585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1906270724/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1906270724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,74998</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12384$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25923308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro‐Rodríguez, Vanessa</creatorcontrib><creatorcontrib>García‐Gutiérrez, Angel</creatorcontrib><creatorcontrib>Canales, Javier</creatorcontrib><creatorcontrib>Cañas, Rafael A</creatorcontrib><creatorcontrib>Kirby, Edward G</creatorcontrib><creatorcontrib>Avila, Concepción</creatorcontrib><creatorcontrib>Cánovas, Francisco M</creatorcontrib><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</description><subject>Adaptation</subject><subject>Assimilation</subject><subject>Biodegradation, Environmental - drug effects</subject><subject>bioenergy</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biosynthesis</subject><subject>Carbohydrate Metabolism - drug effects</subject><subject>Carbohydrate Metabolism - genetics</subject><subject>Carbon - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Deciduous trees</subject><subject>Efficiency</subject><subject>feedstocks</subject><subject>Fertilizer application</subject><subject>Fertilizers</subject><subject>Fructose</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>gene overexpression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glutamate-ammonia ligase</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Glutamine</subject><subject>glutamine synthetase</subject><subject>Leaves</subject><subject>Lignin - metabolism</subject><subject>nitrate fertilizers</subject><subject>nitrate pollution</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen - pharmacology</subject><subject>nutrient use efficiency</subject><subject>Phenotype</subject><subject>Photosynthesis</subject><subject>Phytoremediation</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants (organisms)</subject><subject>Plants, Genetically Modified</subject><subject>Pollution</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus - drug effects</subject><subject>Populus - genetics</subject><subject>Populus - growth & development</subject><subject>Populus - metabolism</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Renewable energy</subject><subject>Reproducibility of Results</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Solubility</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Surface water</subject><subject>Transcription</subject><subject>transcriptome</subject><subject>Transcriptome - genetics</subject><subject>Transgenic</subject><subject>Transgenic plants</subject><subject>transgenic trees</subject><subject>Trees</subject><subject>Trees - drug effects</subject><subject>Trees - genetics</subject><subject>Trees - growth & development</subject><subject>Trees - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkl9PFDEUxSdGI4g--AW0iS_ysHD7v_NklCiSkEiiPPjUdGbu7JZ0p0M7i9lvb5eFjZAY-tI2_fX03tNTVW8pHNEyjsfGH1HGjXhW7VOh9EwryZ7v1kLsVa9yvgJgVEn1stpjsmacg9mvfl_EMbhEpoSYSR8TGRfrKSZcYufd5ONAYk8Wfr4gAW8w5M128FNyExI3dMSNY_DtLZmJH0jjIw6Y5uvX1YvehYxv7uaD6vLb118n32fnP07PTj6fz1oljZhp4KblDDuQjeRSmU4ZqpgGajojNRcSwDRcia6lVPRGctdwpBKd5lJ3ih9Un7a646opRbc4lOKCHZNfurS20Xn78GTwCzuPN5aWZ2oDsih8vFNI8XqFebJLn1sMwQ0YV9lSAyCMENI8jWqtlFC0dPU0qqAGJmld0A-P0Ku4SkNxzdIaNmZoJgp1uKXaFHNO2O96pGA3ObAlB_Y2B4V9968pO_L-4wtwvAX--IDr_yvZiy9n95Lvtzd6F62bJ5_t5U8GVAFQZpjR_C_ZRMPc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Castro‐Rodríguez, Vanessa</creator><creator>García‐Gutiérrez, Angel</creator><creator>Canales, Javier</creator><creator>Cañas, Rafael A</creator><creator>Kirby, Edward G</creator><creator>Avila, Concepción</creator><creator>Cánovas, Francisco M</creator><general>Blackwell Pub</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7TV</scope><scope>C1K</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9727-5585</orcidid></search><sort><creationdate>201601</creationdate><title>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</title><author>Castro‐Rodríguez, Vanessa ; García‐Gutiérrez, Angel ; Canales, Javier ; Cañas, Rafael A ; Kirby, Edward G ; Avila, Concepción ; Cánovas, Francisco M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Assimilation</topic><topic>Biodegradation, Environmental - drug effects</topic><topic>bioenergy</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biosynthesis</topic><topic>Carbohydrate Metabolism - drug effects</topic><topic>Carbohydrate Metabolism - genetics</topic><topic>Carbon - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Deciduous trees</topic><topic>Efficiency</topic><topic>feedstocks</topic><topic>Fertilizer application</topic><topic>Fertilizers</topic><topic>Fructose</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>gene overexpression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glutamate-ammonia ligase</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Glutamine</topic><topic>glutamine synthetase</topic><topic>Leaves</topic><topic>Lignin - metabolism</topic><topic>nitrate fertilizers</topic><topic>nitrate pollution</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen - pharmacology</topic><topic>nutrient use efficiency</topic><topic>Phenotype</topic><topic>Photosynthesis</topic><topic>Phytoremediation</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants (organisms)</topic><topic>Plants, Genetically Modified</topic><topic>Pollution</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus - drug effects</topic><topic>Populus - genetics</topic><topic>Populus - growth & development</topic><topic>Populus - metabolism</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Renewable energy</topic><topic>Reproducibility of Results</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Solubility</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Surface water</topic><topic>Transcription</topic><topic>transcriptome</topic><topic>Transcriptome - genetics</topic><topic>Transgenic</topic><topic>Transgenic plants</topic><topic>transgenic trees</topic><topic>Trees</topic><topic>Trees - drug effects</topic><topic>Trees - genetics</topic><topic>Trees - growth & development</topic><topic>Trees - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro‐Rodríguez, Vanessa</creatorcontrib><creatorcontrib>García‐Gutiérrez, Angel</creatorcontrib><creatorcontrib>Canales, Javier</creatorcontrib><creatorcontrib>Cañas, Rafael A</creatorcontrib><creatorcontrib>Kirby, Edward G</creatorcontrib><creatorcontrib>Avila, Concepción</creatorcontrib><creatorcontrib>Cánovas, Francisco M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castro‐Rodríguez, Vanessa</au><au>García‐Gutiérrez, Angel</au><au>Canales, Javier</au><au>Cañas, Rafael A</au><au>Kirby, Edward G</au><au>Avila, Concepción</au><au>Cánovas, Francisco M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2016-01</date><risdate>2016</risdate><volume>14</volume><issue>1</issue><spage>299</spage><epage>312</epage><pages>299-312</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild‐type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen‐use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above‐ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.</abstract><cop>England</cop><pub>Blackwell Pub</pub><pmid>25923308</pmid><doi>10.1111/pbi.12384</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9727-5585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2016-01, Vol.14 (1), p.299-312 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11629805 |
source | Wiley Online Library Open Access |
subjects | Adaptation Assimilation Biodegradation, Environmental - drug effects bioenergy Biofuels Biomass biomass production Biosynthesis Carbohydrate Metabolism - drug effects Carbohydrate Metabolism - genetics Carbon - metabolism Cell walls Cellulose Chlorophyll Chlorophyll - metabolism Crop yield Crops Deciduous trees Efficiency feedstocks Fertilizer application Fertilizers Fructose Gene expression Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant - drug effects gene overexpression Genes Glucose Glutamate-ammonia ligase Glutamate-Ammonia Ligase - metabolism Glutamine glutamine synthetase Leaves Lignin - metabolism nitrate fertilizers nitrate pollution Nitrates Nitrates - metabolism Nitrogen Nitrogen - metabolism Nitrogen - pharmacology nutrient use efficiency Phenotype Photosynthesis Phytoremediation Plant Proteins - genetics Plant Proteins - metabolism Plants (organisms) Plants, Genetically Modified Pollution Poplar Populus Populus - drug effects Populus - genetics Populus - growth & development Populus - metabolism Proteins Raw materials Renewable energy Reproducibility of Results RNA, Messenger - genetics RNA, Messenger - metabolism Solubility Sucrose Sugar Surface water Transcription transcriptome Transcriptome - genetics Transgenic Transgenic plants transgenic trees Trees Trees - drug effects Trees - genetics Trees - growth & development Trees - metabolism |
title | Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poplar%20trees%20for%20phytoremediation%20of%20high%20levels%20of%20nitrate%20and%20applications%20in%20bioenergy&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Castro%E2%80%90Rodr%C3%ADguez,%20Vanessa&rft.date=2016-01&rft.volume=14&rft.issue=1&rft.spage=299&rft.epage=312&rft.pages=299-312&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12384&rft_dat=%3Cproquest_24P%3E1760902519%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6584-7038c32ed05b53568d681627018d857345008b364dc114f853ab3e15ea7357d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906270724&rft_id=info:pmid/25923308&rfr_iscdi=true |