Loading…

Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)

Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly empl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-12
Main Authors: Quérel, Edouard, Biswas, Sayani, Heiss, Michael W, Gerchow, Lars, Wang, Qing, Asakura, Ryo, Müller, Gian, Das, Debarchan, Guguchia, Zurab, Hotz, Fabian, Janka, Gianluca, Knecht, Andreas, Luetkens, Hubertus, Mielke, 3rd, Charles, Vigo, Carlos, Wang, Chennan, Vogiatzi, Stergiani Marina, Shiroka, Toni, Prokscha, Thomas, von Schoeler, Katharina, Asari, Shunsuke, Chiu, I-Huan, Sato, Akira, Ninomiya, Kazuhiko, Niikura, Megumi, Battaglia, Corsin, Amato, Alex, Remhof, Arndt
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume
creator Quérel, Edouard
Biswas, Sayani
Heiss, Michael W
Gerchow, Lars
Wang, Qing
Asakura, Ryo
Müller, Gian
Das, Debarchan
Guguchia, Zurab
Hotz, Fabian
Janka, Gianluca
Knecht, Andreas
Luetkens, Hubertus
Mielke, 3rd, Charles
Vigo, Carlos
Wang, Chennan
Vogiatzi, Stergiani Marina
Shiroka, Toni
Prokscha, Thomas
von Schoeler, Katharina
Asari, Shunsuke
Chiu, I-Huan
Sato, Akira
Ninomiya, Kazuhiko
Niikura, Megumi
Battaglia, Corsin
Amato, Alex
Remhof, Arndt
description Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface. In the context of battery research, the limited escape depth of X-rays often necessitates the design of experiment-specific cells with thinner inner layers, despite the risk that these tailored cells may not exactly replicate the cycling behavior of larger commercial cells. Muon-induced X-ray emission (MIXE) is a non-destructive spectroscopic technique that involves implanting negative muons into a sample and detecting the highly energetic muonic X-rays generated when these muons are captured by the sample's atoms. By virtue of the high energy of muonic X-rays, the depth of analysis of MIXE greatly exceeds that of other X-ray based techniques. In this article, we introduce the technique and lay the groundwork for employing MIXE in future / analyses of batteries. We demonstrate that MIXE can detect nearly all elements, including low atomic number ones such as Li. Additionally, we establish the quantitative nature of MIXE through the precise determination of LiNi Mn Co O (NMC) electrode stoichiometries. Finally, we demonstrate that MIXE enables the acquisition of depth-resolved chemical information from a 700 μm thick cell, in good agreement with simulation results.
doi_str_mv 10.1039/d4ta05112b
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11639054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146856677</sourcerecordid><originalsourceid>FETCH-LOGICAL-p197t-2f35766027fd58a5d0b0de82fa16ccb84ddfdfec7b2ee3b6224837b2328a901f3</originalsourceid><addsrcrecordid>eNpVUMtO5DAQtFagBcFc9gNWPsIh4Efix2m1QuyCBOIC0twix-4wRokdbGfQ_D2ReAj60lWq7ip1I_SLkjNKuD53dTGkoZR1P9AhIw2pZK3F3idW6gCtcn4iSylChNY_0QHXQmqi5SHKd1tINo4-POKyATyl2C24cjCVDXZ-gHE02AecJ7AlxWzj5C02wQy7DBnHHnemFEh-IS9-2RnnGCof3GzB4XWVzA7D6HP2MeCT2-v15ekx2u_NkGH13o_Qw7_L-4ur6ubu__XF35tqolqWivW8kUIQJnvXKNM40hEHivWGCms7VTvXux6s7BgA7wRjteIL4UwZTWjPj9CfN99p7kZwFkJJZmin5EeTdm00vv2uBL9pH-O2pVRwTZp6cTh5d0jxeYZc2uUSC8NgAsQ5t5zWQjVCSLmM_v4a9pny8Wr-CkS9g8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146856677</pqid></control><display><type>article</type><title>Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Quérel, Edouard ; Biswas, Sayani ; Heiss, Michael W ; Gerchow, Lars ; Wang, Qing ; Asakura, Ryo ; Müller, Gian ; Das, Debarchan ; Guguchia, Zurab ; Hotz, Fabian ; Janka, Gianluca ; Knecht, Andreas ; Luetkens, Hubertus ; Mielke, 3rd, Charles ; Vigo, Carlos ; Wang, Chennan ; Vogiatzi, Stergiani Marina ; Shiroka, Toni ; Prokscha, Thomas ; von Schoeler, Katharina ; Asari, Shunsuke ; Chiu, I-Huan ; Sato, Akira ; Ninomiya, Kazuhiko ; Niikura, Megumi ; Battaglia, Corsin ; Amato, Alex ; Remhof, Arndt</creator><creatorcontrib>Quérel, Edouard ; Biswas, Sayani ; Heiss, Michael W ; Gerchow, Lars ; Wang, Qing ; Asakura, Ryo ; Müller, Gian ; Das, Debarchan ; Guguchia, Zurab ; Hotz, Fabian ; Janka, Gianluca ; Knecht, Andreas ; Luetkens, Hubertus ; Mielke, 3rd, Charles ; Vigo, Carlos ; Wang, Chennan ; Vogiatzi, Stergiani Marina ; Shiroka, Toni ; Prokscha, Thomas ; von Schoeler, Katharina ; Asari, Shunsuke ; Chiu, I-Huan ; Sato, Akira ; Ninomiya, Kazuhiko ; Niikura, Megumi ; Battaglia, Corsin ; Amato, Alex ; Remhof, Arndt</creatorcontrib><description>Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface. In the context of battery research, the limited escape depth of X-rays often necessitates the design of experiment-specific cells with thinner inner layers, despite the risk that these tailored cells may not exactly replicate the cycling behavior of larger commercial cells. Muon-induced X-ray emission (MIXE) is a non-destructive spectroscopic technique that involves implanting negative muons into a sample and detecting the highly energetic muonic X-rays generated when these muons are captured by the sample's atoms. By virtue of the high energy of muonic X-rays, the depth of analysis of MIXE greatly exceeds that of other X-ray based techniques. In this article, we introduce the technique and lay the groundwork for employing MIXE in future / analyses of batteries. We demonstrate that MIXE can detect nearly all elements, including low atomic number ones such as Li. Additionally, we establish the quantitative nature of MIXE through the precise determination of LiNi Mn Co O (NMC) electrode stoichiometries. Finally, we demonstrate that MIXE enables the acquisition of depth-resolved chemical information from a 700 μm thick cell, in good agreement with simulation results.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05112b</identifier><identifier>PMID: 39679097</identifier><language>eng</language><publisher>England: The Royal Society of Chemistry</publisher><subject>Chemistry</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2025 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9147-6885 ; 0009-0000-9165-2781 ; 0000-0002-4239-8673 ; 0000-0002-3767-950X ; 0000-0001-5453-0195 ; 0000-0002-6874-0203 ; 0000-0002-9264-9493 ; 0000-0002-6076-2635 ; 0000-0002-0764-7574 ; 0000-0002-4972-4419 ; 0000-0002-5003-1134 ; 0009-0004-4886-7532 ; 0000-0001-8030-9187 ; 0000-0002-5842-9788 ; 0009-0008-2282-9350 ; 0000-0002-8394-9646 ; 0009-0005-2671-5869 ; 0000-0001-9963-7498 ; 0000-0002-5940-2667 ; 0000-0001-7366-2994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39679097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quérel, Edouard</creatorcontrib><creatorcontrib>Biswas, Sayani</creatorcontrib><creatorcontrib>Heiss, Michael W</creatorcontrib><creatorcontrib>Gerchow, Lars</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Asakura, Ryo</creatorcontrib><creatorcontrib>Müller, Gian</creatorcontrib><creatorcontrib>Das, Debarchan</creatorcontrib><creatorcontrib>Guguchia, Zurab</creatorcontrib><creatorcontrib>Hotz, Fabian</creatorcontrib><creatorcontrib>Janka, Gianluca</creatorcontrib><creatorcontrib>Knecht, Andreas</creatorcontrib><creatorcontrib>Luetkens, Hubertus</creatorcontrib><creatorcontrib>Mielke, 3rd, Charles</creatorcontrib><creatorcontrib>Vigo, Carlos</creatorcontrib><creatorcontrib>Wang, Chennan</creatorcontrib><creatorcontrib>Vogiatzi, Stergiani Marina</creatorcontrib><creatorcontrib>Shiroka, Toni</creatorcontrib><creatorcontrib>Prokscha, Thomas</creatorcontrib><creatorcontrib>von Schoeler, Katharina</creatorcontrib><creatorcontrib>Asari, Shunsuke</creatorcontrib><creatorcontrib>Chiu, I-Huan</creatorcontrib><creatorcontrib>Sato, Akira</creatorcontrib><creatorcontrib>Ninomiya, Kazuhiko</creatorcontrib><creatorcontrib>Niikura, Megumi</creatorcontrib><creatorcontrib>Battaglia, Corsin</creatorcontrib><creatorcontrib>Amato, Alex</creatorcontrib><creatorcontrib>Remhof, Arndt</creatorcontrib><title>Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J Mater Chem A Mater</addtitle><description>Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface. In the context of battery research, the limited escape depth of X-rays often necessitates the design of experiment-specific cells with thinner inner layers, despite the risk that these tailored cells may not exactly replicate the cycling behavior of larger commercial cells. Muon-induced X-ray emission (MIXE) is a non-destructive spectroscopic technique that involves implanting negative muons into a sample and detecting the highly energetic muonic X-rays generated when these muons are captured by the sample's atoms. By virtue of the high energy of muonic X-rays, the depth of analysis of MIXE greatly exceeds that of other X-ray based techniques. In this article, we introduce the technique and lay the groundwork for employing MIXE in future / analyses of batteries. We demonstrate that MIXE can detect nearly all elements, including low atomic number ones such as Li. Additionally, we establish the quantitative nature of MIXE through the precise determination of LiNi Mn Co O (NMC) electrode stoichiometries. Finally, we demonstrate that MIXE enables the acquisition of depth-resolved chemical information from a 700 μm thick cell, in good agreement with simulation results.</description><subject>Chemistry</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUMtO5DAQtFagBcFc9gNWPsIh4Efix2m1QuyCBOIC0twix-4wRokdbGfQ_D2ReAj60lWq7ip1I_SLkjNKuD53dTGkoZR1P9AhIw2pZK3F3idW6gCtcn4iSylChNY_0QHXQmqi5SHKd1tINo4-POKyATyl2C24cjCVDXZ-gHE02AecJ7AlxWzj5C02wQy7DBnHHnemFEh-IS9-2RnnGCof3GzB4XWVzA7D6HP2MeCT2-v15ekx2u_NkGH13o_Qw7_L-4ur6ubu__XF35tqolqWivW8kUIQJnvXKNM40hEHivWGCms7VTvXux6s7BgA7wRjteIL4UwZTWjPj9CfN99p7kZwFkJJZmin5EeTdm00vv2uBL9pH-O2pVRwTZp6cTh5d0jxeYZc2uUSC8NgAsQ5t5zWQjVCSLmM_v4a9pny8Wr-CkS9g8o</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Quérel, Edouard</creator><creator>Biswas, Sayani</creator><creator>Heiss, Michael W</creator><creator>Gerchow, Lars</creator><creator>Wang, Qing</creator><creator>Asakura, Ryo</creator><creator>Müller, Gian</creator><creator>Das, Debarchan</creator><creator>Guguchia, Zurab</creator><creator>Hotz, Fabian</creator><creator>Janka, Gianluca</creator><creator>Knecht, Andreas</creator><creator>Luetkens, Hubertus</creator><creator>Mielke, 3rd, Charles</creator><creator>Vigo, Carlos</creator><creator>Wang, Chennan</creator><creator>Vogiatzi, Stergiani Marina</creator><creator>Shiroka, Toni</creator><creator>Prokscha, Thomas</creator><creator>von Schoeler, Katharina</creator><creator>Asari, Shunsuke</creator><creator>Chiu, I-Huan</creator><creator>Sato, Akira</creator><creator>Ninomiya, Kazuhiko</creator><creator>Niikura, Megumi</creator><creator>Battaglia, Corsin</creator><creator>Amato, Alex</creator><creator>Remhof, Arndt</creator><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9147-6885</orcidid><orcidid>https://orcid.org/0009-0000-9165-2781</orcidid><orcidid>https://orcid.org/0000-0002-4239-8673</orcidid><orcidid>https://orcid.org/0000-0002-3767-950X</orcidid><orcidid>https://orcid.org/0000-0001-5453-0195</orcidid><orcidid>https://orcid.org/0000-0002-6874-0203</orcidid><orcidid>https://orcid.org/0000-0002-9264-9493</orcidid><orcidid>https://orcid.org/0000-0002-6076-2635</orcidid><orcidid>https://orcid.org/0000-0002-0764-7574</orcidid><orcidid>https://orcid.org/0000-0002-4972-4419</orcidid><orcidid>https://orcid.org/0000-0002-5003-1134</orcidid><orcidid>https://orcid.org/0009-0004-4886-7532</orcidid><orcidid>https://orcid.org/0000-0001-8030-9187</orcidid><orcidid>https://orcid.org/0000-0002-5842-9788</orcidid><orcidid>https://orcid.org/0009-0008-2282-9350</orcidid><orcidid>https://orcid.org/0000-0002-8394-9646</orcidid><orcidid>https://orcid.org/0009-0005-2671-5869</orcidid><orcidid>https://orcid.org/0000-0001-9963-7498</orcidid><orcidid>https://orcid.org/0000-0002-5940-2667</orcidid><orcidid>https://orcid.org/0000-0001-7366-2994</orcidid></search><sort><creationdate>20241204</creationdate><title>Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)</title><author>Quérel, Edouard ; Biswas, Sayani ; Heiss, Michael W ; Gerchow, Lars ; Wang, Qing ; Asakura, Ryo ; Müller, Gian ; Das, Debarchan ; Guguchia, Zurab ; Hotz, Fabian ; Janka, Gianluca ; Knecht, Andreas ; Luetkens, Hubertus ; Mielke, 3rd, Charles ; Vigo, Carlos ; Wang, Chennan ; Vogiatzi, Stergiani Marina ; Shiroka, Toni ; Prokscha, Thomas ; von Schoeler, Katharina ; Asari, Shunsuke ; Chiu, I-Huan ; Sato, Akira ; Ninomiya, Kazuhiko ; Niikura, Megumi ; Battaglia, Corsin ; Amato, Alex ; Remhof, Arndt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p197t-2f35766027fd58a5d0b0de82fa16ccb84ddfdfec7b2ee3b6224837b2328a901f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quérel, Edouard</creatorcontrib><creatorcontrib>Biswas, Sayani</creatorcontrib><creatorcontrib>Heiss, Michael W</creatorcontrib><creatorcontrib>Gerchow, Lars</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Asakura, Ryo</creatorcontrib><creatorcontrib>Müller, Gian</creatorcontrib><creatorcontrib>Das, Debarchan</creatorcontrib><creatorcontrib>Guguchia, Zurab</creatorcontrib><creatorcontrib>Hotz, Fabian</creatorcontrib><creatorcontrib>Janka, Gianluca</creatorcontrib><creatorcontrib>Knecht, Andreas</creatorcontrib><creatorcontrib>Luetkens, Hubertus</creatorcontrib><creatorcontrib>Mielke, 3rd, Charles</creatorcontrib><creatorcontrib>Vigo, Carlos</creatorcontrib><creatorcontrib>Wang, Chennan</creatorcontrib><creatorcontrib>Vogiatzi, Stergiani Marina</creatorcontrib><creatorcontrib>Shiroka, Toni</creatorcontrib><creatorcontrib>Prokscha, Thomas</creatorcontrib><creatorcontrib>von Schoeler, Katharina</creatorcontrib><creatorcontrib>Asari, Shunsuke</creatorcontrib><creatorcontrib>Chiu, I-Huan</creatorcontrib><creatorcontrib>Sato, Akira</creatorcontrib><creatorcontrib>Ninomiya, Kazuhiko</creatorcontrib><creatorcontrib>Niikura, Megumi</creatorcontrib><creatorcontrib>Battaglia, Corsin</creatorcontrib><creatorcontrib>Amato, Alex</creatorcontrib><creatorcontrib>Remhof, Arndt</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quérel, Edouard</au><au>Biswas, Sayani</au><au>Heiss, Michael W</au><au>Gerchow, Lars</au><au>Wang, Qing</au><au>Asakura, Ryo</au><au>Müller, Gian</au><au>Das, Debarchan</au><au>Guguchia, Zurab</au><au>Hotz, Fabian</au><au>Janka, Gianluca</au><au>Knecht, Andreas</au><au>Luetkens, Hubertus</au><au>Mielke, 3rd, Charles</au><au>Vigo, Carlos</au><au>Wang, Chennan</au><au>Vogiatzi, Stergiani Marina</au><au>Shiroka, Toni</au><au>Prokscha, Thomas</au><au>von Schoeler, Katharina</au><au>Asari, Shunsuke</au><au>Chiu, I-Huan</au><au>Sato, Akira</au><au>Ninomiya, Kazuhiko</au><au>Niikura, Megumi</au><au>Battaglia, Corsin</au><au>Amato, Alex</au><au>Remhof, Arndt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><addtitle>J Mater Chem A Mater</addtitle><date>2024-12-04</date><risdate>2024</risdate><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface. In the context of battery research, the limited escape depth of X-rays often necessitates the design of experiment-specific cells with thinner inner layers, despite the risk that these tailored cells may not exactly replicate the cycling behavior of larger commercial cells. Muon-induced X-ray emission (MIXE) is a non-destructive spectroscopic technique that involves implanting negative muons into a sample and detecting the highly energetic muonic X-rays generated when these muons are captured by the sample's atoms. By virtue of the high energy of muonic X-rays, the depth of analysis of MIXE greatly exceeds that of other X-ray based techniques. In this article, we introduce the technique and lay the groundwork for employing MIXE in future / analyses of batteries. We demonstrate that MIXE can detect nearly all elements, including low atomic number ones such as Li. Additionally, we establish the quantitative nature of MIXE through the precise determination of LiNi Mn Co O (NMC) electrode stoichiometries. Finally, we demonstrate that MIXE enables the acquisition of depth-resolved chemical information from a 700 μm thick cell, in good agreement with simulation results.</abstract><cop>England</cop><pub>The Royal Society of Chemistry</pub><pmid>39679097</pmid><doi>10.1039/d4ta05112b</doi><orcidid>https://orcid.org/0000-0002-9147-6885</orcidid><orcidid>https://orcid.org/0009-0000-9165-2781</orcidid><orcidid>https://orcid.org/0000-0002-4239-8673</orcidid><orcidid>https://orcid.org/0000-0002-3767-950X</orcidid><orcidid>https://orcid.org/0000-0001-5453-0195</orcidid><orcidid>https://orcid.org/0000-0002-6874-0203</orcidid><orcidid>https://orcid.org/0000-0002-9264-9493</orcidid><orcidid>https://orcid.org/0000-0002-6076-2635</orcidid><orcidid>https://orcid.org/0000-0002-0764-7574</orcidid><orcidid>https://orcid.org/0000-0002-4972-4419</orcidid><orcidid>https://orcid.org/0000-0002-5003-1134</orcidid><orcidid>https://orcid.org/0009-0004-4886-7532</orcidid><orcidid>https://orcid.org/0000-0001-8030-9187</orcidid><orcidid>https://orcid.org/0000-0002-5842-9788</orcidid><orcidid>https://orcid.org/0009-0008-2282-9350</orcidid><orcidid>https://orcid.org/0000-0002-8394-9646</orcidid><orcidid>https://orcid.org/0009-0005-2671-5869</orcidid><orcidid>https://orcid.org/0000-0001-9963-7498</orcidid><orcidid>https://orcid.org/0000-0002-5940-2667</orcidid><orcidid>https://orcid.org/0000-0001-7366-2994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12
issn 2050-7488
2050-7496
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11639054
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Chemistry
title Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20the%20probing-depth%20dilemma%20in%20spectroscopic%20analyses%20of%20batteries%20with%20muon-induced%20X-ray%20emission%20(MIXE)&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qu%C3%A9rel,%20Edouard&rft.date=2024-12-04&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05112b&rft_dat=%3Cproquest_pubme%3E3146856677%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p197t-2f35766027fd58a5d0b0de82fa16ccb84ddfdfec7b2ee3b6224837b2328a901f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146856677&rft_id=info:pmid/39679097&rfr_iscdi=true