Loading…
Enzyme instability and proteolysis during the purification of an alcohol dehydrogenase from Drosophila melanogaster
The alcohol dehydrogenase of the Drosophila melanogaster adhUF allele (alloenzyme with ultra-fast electrophoretic mobility) was unstable in crude or partially purified preparations. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated that inactivation was porbably due to proteolytic...
Saved in:
Published in: | Biochemical journal 1977-05, Vol.163 (2), p.317-323 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The alcohol dehydrogenase of the Drosophila melanogaster adhUF allele (alloenzyme with ultra-fast electrophoretic mobility) was unstable in crude or partially purified preparations. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated that inactivation was porbably due to proteolytic degradation, and new method of purification of the enzyme was developed. After three steps, namely salmine sulphate precipitation, hydroxyapatite chromatography and Sephadex G-100 gel filtration, a 10-fold purified preparation was obtained. The enzyme produced was relatively stable compared with alcohol dehydrogenase purified by other methods, and was shown to be proteinase-free. The enzyme had a subunit mol.wt. of 24000 and had a single thiol residue per subunit available for titration with 5,5'-dithiobis-(2-nitrobenzoic acid). The amino acid composition and C-terminal amino acid sequence of the enzyme were determined. The substrate specificity of this alcohol dehydrogenase was also characterized. These results are discussed in relation to experiments on the evolutionary significance of thermostability at the adh locus. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj1630317 |