Loading…

Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport

Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2024-12, Vol.14 (53), p.39727-39739
Main Authors: Khan, M I, Mujtaba, Ali, M Arslan Nadeem, Majeed, Amira, Ezzine, Safa, Alshahrani, Dhafer O
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 39739
container_issue 53
container_start_page 39727
container_title RSC advances
container_volume 14
creator Khan, M I
Mujtaba, Ali
M Arslan Nadeem
Majeed, Amira
Ezzine, Safa
Alshahrani, Dhafer O
description Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.
doi_str_mv 10.1039/d4ra07012g
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146015905</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3</originalsourceid><addsrcrecordid>eNpdkM1O3TAQhaOqlYqATZ9gpG7YpPVP7JuwqRCCFgmJRVt1Gc21x8HUsYOdIO6j9G2bW1gUZjOjOWc-zUxVfeDsE2ey-2ybjGzDuBjeVAeCNboWTHdv_6vfV8el3LE1tOJC84Pqz4VJtcueog07GDJRhLKL8y0VXyA5uKTapoks_PouYCk-DhCJRgiEDuhxzmjmU1hiSOb3XgyYBwIfZ8oBd5ShTGj2gksZ_Djl9LDCDO67M0ZDgNFCxslb8CnCCoxlSnk-qt45DIWOn_Nh9fPy4sf5t_r65uvV-dl1PQnZzrUzZqOclKid2pBWUokt27ZWSGdpw5wTbdt03OpGq5ZrJsTWSW3XMa2wQZKH1Zcn7rRsR7KG4rpC6KfsR8y7PqHvXyrR3_ZDeug53z-x7VbCyTMhp_uFytyPvhgKASOlpfSSN7pTTOh2tX58Zb1LS47rff9cjKuOKfkXfUKRxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146015905</pqid></control><display><type>article</type><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><source>PubMed (Medline)</source><creator>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</creator><creatorcontrib>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</creatorcontrib><description>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra07012g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blue shift ; Capacitance ; Charge transfer ; Chemical synthesis ; Chemistry ; Diffusion coefficient ; Electrochemical impedance spectroscopy ; Electrons ; Energy bands ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Interlayers ; Ion diffusion ; Ion transport ; Iron ; Optical properties ; Spectrum analysis ; Tungsten disulfide</subject><ispartof>RSC advances, 2024-12, Vol.14 (53), p.39727-39739</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651289/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651289/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Khan, M I</creatorcontrib><creatorcontrib>Mujtaba, Ali</creatorcontrib><creatorcontrib>M Arslan Nadeem</creatorcontrib><creatorcontrib>Majeed, Amira</creatorcontrib><creatorcontrib>Ezzine, Safa</creatorcontrib><creatorcontrib>Alshahrani, Dhafer O</creatorcontrib><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><title>RSC advances</title><description>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</description><subject>Blue shift</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Diffusion coefficient</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion transport</subject><subject>Iron</subject><subject>Optical properties</subject><subject>Spectrum analysis</subject><subject>Tungsten disulfide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkM1O3TAQhaOqlYqATZ9gpG7YpPVP7JuwqRCCFgmJRVt1Gc21x8HUsYOdIO6j9G2bW1gUZjOjOWc-zUxVfeDsE2ey-2ybjGzDuBjeVAeCNboWTHdv_6vfV8el3LE1tOJC84Pqz4VJtcueog07GDJRhLKL8y0VXyA5uKTapoks_PouYCk-DhCJRgiEDuhxzmjmU1hiSOb3XgyYBwIfZ8oBd5ShTGj2gksZ_Djl9LDCDO67M0ZDgNFCxslb8CnCCoxlSnk-qt45DIWOn_Nh9fPy4sf5t_r65uvV-dl1PQnZzrUzZqOclKid2pBWUokt27ZWSGdpw5wTbdt03OpGq5ZrJsTWSW3XMa2wQZKH1Zcn7rRsR7KG4rpC6KfsR8y7PqHvXyrR3_ZDeug53z-x7VbCyTMhp_uFytyPvhgKASOlpfSSN7pTTOh2tX58Zb1LS47rff9cjKuOKfkXfUKRxw</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Khan, M I</creator><creator>Mujtaba, Ali</creator><creator>M Arslan Nadeem</creator><creator>Majeed, Amira</creator><creator>Ezzine, Safa</creator><creator>Alshahrani, Dhafer O</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241210</creationdate><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><author>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blue shift</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Diffusion coefficient</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion transport</topic><topic>Iron</topic><topic>Optical properties</topic><topic>Spectrum analysis</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, M I</creatorcontrib><creatorcontrib>Mujtaba, Ali</creatorcontrib><creatorcontrib>M Arslan Nadeem</creatorcontrib><creatorcontrib>Majeed, Amira</creatorcontrib><creatorcontrib>Ezzine, Safa</creatorcontrib><creatorcontrib>Alshahrani, Dhafer O</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, M I</au><au>Mujtaba, Ali</au><au>M Arslan Nadeem</au><au>Majeed, Amira</au><au>Ezzine, Safa</au><au>Alshahrani, Dhafer O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</atitle><jtitle>RSC advances</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>14</volume><issue>53</issue><spage>39727</spage><epage>39739</epage><pages>39727-39739</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra07012g</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-12, Vol.14 (53), p.39727-39739
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651289
source PubMed (Medline)
subjects Blue shift
Capacitance
Charge transfer
Chemical synthesis
Chemistry
Diffusion coefficient
Electrochemical impedance spectroscopy
Electrons
Energy bands
Fourier transforms
Infrared analysis
Infrared spectroscopy
Interlayers
Ion diffusion
Ion transport
Iron
Optical properties
Spectrum analysis
Tungsten disulfide
title Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-friendly%20green%20synthesis%20of%20Fe-doped%20WS2%20using%20neem%20leaf%20extract:%20unlocking%20large%20interlayer%20spacing%20for%20improved%20capacitance%20and%20rapid%20ion%20transport&rft.jtitle=RSC%20advances&rft.au=Khan,%20M%20I&rft.date=2024-12-10&rft.volume=14&rft.issue=53&rft.spage=39727&rft.epage=39739&rft.pages=39727-39739&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra07012g&rft_dat=%3Cproquest_pubme%3E3146015905%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146015905&rft_id=info:pmid/&rfr_iscdi=true