Loading…
Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport
Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR...
Saved in:
Published in: | RSC advances 2024-12, Vol.14 (53), p.39727-39739 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 39739 |
container_issue | 53 |
container_start_page | 39727 |
container_title | RSC advances |
container_volume | 14 |
creator | Khan, M I Mujtaba, Ali M Arslan Nadeem Majeed, Amira Ezzine, Safa Alshahrani, Dhafer O |
description | Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices. |
doi_str_mv | 10.1039/d4ra07012g |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146015905</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3</originalsourceid><addsrcrecordid>eNpdkM1O3TAQhaOqlYqATZ9gpG7YpPVP7JuwqRCCFgmJRVt1Gc21x8HUsYOdIO6j9G2bW1gUZjOjOWc-zUxVfeDsE2ey-2ybjGzDuBjeVAeCNboWTHdv_6vfV8el3LE1tOJC84Pqz4VJtcueog07GDJRhLKL8y0VXyA5uKTapoks_PouYCk-DhCJRgiEDuhxzmjmU1hiSOb3XgyYBwIfZ8oBd5ShTGj2gksZ_Djl9LDCDO67M0ZDgNFCxslb8CnCCoxlSnk-qt45DIWOn_Nh9fPy4sf5t_r65uvV-dl1PQnZzrUzZqOclKid2pBWUokt27ZWSGdpw5wTbdt03OpGq5ZrJsTWSW3XMa2wQZKH1Zcn7rRsR7KG4rpC6KfsR8y7PqHvXyrR3_ZDeug53z-x7VbCyTMhp_uFytyPvhgKASOlpfSSN7pTTOh2tX58Zb1LS47rff9cjKuOKfkXfUKRxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146015905</pqid></control><display><type>article</type><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><source>PubMed (Medline)</source><creator>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</creator><creatorcontrib>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</creatorcontrib><description>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra07012g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blue shift ; Capacitance ; Charge transfer ; Chemical synthesis ; Chemistry ; Diffusion coefficient ; Electrochemical impedance spectroscopy ; Electrons ; Energy bands ; Fourier transforms ; Infrared analysis ; Infrared spectroscopy ; Interlayers ; Ion diffusion ; Ion transport ; Iron ; Optical properties ; Spectrum analysis ; Tungsten disulfide</subject><ispartof>RSC advances, 2024-12, Vol.14 (53), p.39727-39739</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651289/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651289/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Khan, M I</creatorcontrib><creatorcontrib>Mujtaba, Ali</creatorcontrib><creatorcontrib>M Arslan Nadeem</creatorcontrib><creatorcontrib>Majeed, Amira</creatorcontrib><creatorcontrib>Ezzine, Safa</creatorcontrib><creatorcontrib>Alshahrani, Dhafer O</creatorcontrib><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><title>RSC advances</title><description>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</description><subject>Blue shift</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Diffusion coefficient</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrons</subject><subject>Energy bands</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion transport</subject><subject>Iron</subject><subject>Optical properties</subject><subject>Spectrum analysis</subject><subject>Tungsten disulfide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkM1O3TAQhaOqlYqATZ9gpG7YpPVP7JuwqRCCFgmJRVt1Gc21x8HUsYOdIO6j9G2bW1gUZjOjOWc-zUxVfeDsE2ey-2ybjGzDuBjeVAeCNboWTHdv_6vfV8el3LE1tOJC84Pqz4VJtcueog07GDJRhLKL8y0VXyA5uKTapoks_PouYCk-DhCJRgiEDuhxzmjmU1hiSOb3XgyYBwIfZ8oBd5ShTGj2gksZ_Djl9LDCDO67M0ZDgNFCxslb8CnCCoxlSnk-qt45DIWOn_Nh9fPy4sf5t_r65uvV-dl1PQnZzrUzZqOclKid2pBWUokt27ZWSGdpw5wTbdt03OpGq5ZrJsTWSW3XMa2wQZKH1Zcn7rRsR7KG4rpC6KfsR8y7PqHvXyrR3_ZDeug53z-x7VbCyTMhp_uFytyPvhgKASOlpfSSN7pTTOh2tX58Zb1LS47rff9cjKuOKfkXfUKRxw</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Khan, M I</creator><creator>Mujtaba, Ali</creator><creator>M Arslan Nadeem</creator><creator>Majeed, Amira</creator><creator>Ezzine, Safa</creator><creator>Alshahrani, Dhafer O</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241210</creationdate><title>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</title><author>Khan, M I ; Mujtaba, Ali ; M Arslan Nadeem ; Majeed, Amira ; Ezzine, Safa ; Alshahrani, Dhafer O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blue shift</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Diffusion coefficient</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrons</topic><topic>Energy bands</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion transport</topic><topic>Iron</topic><topic>Optical properties</topic><topic>Spectrum analysis</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, M I</creatorcontrib><creatorcontrib>Mujtaba, Ali</creatorcontrib><creatorcontrib>M Arslan Nadeem</creatorcontrib><creatorcontrib>Majeed, Amira</creatorcontrib><creatorcontrib>Ezzine, Safa</creatorcontrib><creatorcontrib>Alshahrani, Dhafer O</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, M I</au><au>Mujtaba, Ali</au><au>M Arslan Nadeem</au><au>Majeed, Amira</au><au>Ezzine, Safa</au><au>Alshahrani, Dhafer O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport</atitle><jtitle>RSC advances</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>14</volume><issue>53</issue><spage>39727</spage><epage>39739</epage><pages>39727-39739</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Iron-doped tungsten disulfide (Fe-WS2) nanoparticles were synthesized via a green method using neem leaf extract. X-ray diffraction (XRD) confirmed structural changes, with the formation of a hexagonal structure. The d-spacing is increased by Fe doping (6.05–6.08 Å). Fourier-transform infrared (FTIR) spectroscopy identified W–S and S–S bond vibrations, crucial for material integrity. The Brunauer–Emmett–Teller (BET) analysis confirmed the increased surface area and pore radius as a result of enhanced ions diffusion. The morphology study through Scanning Electron Microscopy (SEM) revealed enhanced porosity of Fe-WS2, as evidenced by the more granular and disordered structure. UV-vis spectroscopy (UV-vis) showed a blue shift and an increased energy band gap from 2.48 eV to 2.64 eV, indicating improved optical properties. Methyl blue (MB) dye adsorption spectra showed that the Fe-WS2 is porous, and as a result, more electrolyte adsorbs within the electrode. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed enhanced specific capacitance and energy density. Electrochemical impedance spectroscopy (EIS) demonstrated a significant reduction in charge transfer resistance and a substantial increase in the ion diffusion coefficient. These findings underscore the potential of Fe-WS2 for high-performance energy storage devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra07012g</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-12, Vol.14 (53), p.39727-39739 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651289 |
source | PubMed (Medline) |
subjects | Blue shift Capacitance Charge transfer Chemical synthesis Chemistry Diffusion coefficient Electrochemical impedance spectroscopy Electrons Energy bands Fourier transforms Infrared analysis Infrared spectroscopy Interlayers Ion diffusion Ion transport Iron Optical properties Spectrum analysis Tungsten disulfide |
title | Eco-friendly green synthesis of Fe-doped WS2 using neem leaf extract: unlocking large interlayer spacing for improved capacitance and rapid ion transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-friendly%20green%20synthesis%20of%20Fe-doped%20WS2%20using%20neem%20leaf%20extract:%20unlocking%20large%20interlayer%20spacing%20for%20improved%20capacitance%20and%20rapid%20ion%20transport&rft.jtitle=RSC%20advances&rft.au=Khan,%20M%20I&rft.date=2024-12-10&rft.volume=14&rft.issue=53&rft.spage=39727&rft.epage=39739&rft.pages=39727-39739&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra07012g&rft_dat=%3Cproquest_pubme%3E3146015905%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p238t-fcc75f33a6f57e65352b0b8d23fde70ff288491d6465816022bf36dfcc65a4ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146015905&rft_id=info:pmid/&rfr_iscdi=true |