Loading…

Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane

In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplasti...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied polymer materials 2024-12, Vol.6 (23), p.14638-14647
Main Authors: Baluchová, Simona, van Leeuwen, Stach, Kumru, Baris, Buijnsters, Josephus G.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode. Scanning electron microscopy revealed a uniform distribution of conductive fillers within the composite materials with no signs of clustering or aggregation. Notably, increasing the proportion of BDD particles led to a 10-fold improvement in conductivity, from 0.12 S m–1 for TPU/CNT to 1.2 S m–1 for TPU/CNT/BDD (1:2). Cyclic voltammetry of the inorganic redox markers, [Ru­(NH3)6]3+/2+ and [Fe­(CN)6]3–/4–, also revealed a reduction in peak-to-peak separation (ΔE p) with a higher BDD content, indicating enhanced electron transfer kinetics. This was further confirmed by the highest apparent heterogeneous electron transfer rate constants (k 0 app) of 1 × 10–3 cm s–1 obtained for both markers for the TPU/CNT/BDD (1:2) electrode. Additionally, the functionality of the flexible TPU/CNT/BDD electrodes was successfully validated by the electrochemical detection of dopamine, a complex organic molecule, at millimolar concentrations by using differential pulse voltammetry. This proof-of-concept may accelerate development of highly desirable diamond-based flexible devices with customizable geometries and dimensions and pave the way for various applications where flexibility is mandated, such as neuroscience, biomedical fields, health, and food monitoring.
ISSN:2637-6105
2637-6105
DOI:10.1021/acsapm.4c02748