Loading…
Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes
Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the...
Saved in:
Published in: | Translational cancer research 2024-11, Vol.13 (11), p.6105-6116 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6116 |
container_issue | 11 |
container_start_page | 6105 |
container_title | Translational cancer research |
container_volume | 13 |
creator | Machado-Neto, João Agostinho Vicari, Hugo Passos Lipreri da Silva, Jean Carlos Carvalho, Maria Fernanda Lopes Lima, Keli |
description | Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.
Transcript levels of
from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of
expression on clinical outcomes.
FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors.
expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low
expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways.
mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.
FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation. |
doi_str_mv | 10.21037/tcr-24-1091 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147132979</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1120-dbbb4a5a8184d571afd45c83921641b7079ef4b47c95ea6e1af998825c9d92ce3</originalsourceid><addsrcrecordid>eNpVULFOwzAUtBCIVqUbM_LIEvBznDhmQahqAanAAnPkOE5qlNjBTpAqfp4gSlWm93R3unvvEDoHckWBxPy6Vz6iLAIi4AhNKQURpRmJjw_2CZqH8E4IoQAZI-kpmsQiFZwDm6KvZat9bWyNq8Gq3jgbsKvw6ul5DdhY3G5140yJrXZdI0MbbkY0mHrTB1x51-LCOGMr51vZGxVw736QxtVGyQZLW-JuI0dS7bFmBIOSnQ5n6KSSTdDz3Zyht9XydfEQrV_uHxd366gDoCQqi6JgMpHZeH2ZcJBVyRKVxYJCyqDghAtdsYJxJRItUz0KhMgymihRCqp0PEO3v77dULS6VNr2XjZ5500r_TZ30uT_GWs2ee0-c4A0AT5WOEOXOwfvPgYd-rw1Qelm_EW7IeQxMA4xFVyM0ovDsH3KX-XxN0A2hv8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147132979</pqid></control><display><type>article</type><title>Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes</title><source>PubMed Central</source><creator>Machado-Neto, João Agostinho ; Vicari, Hugo Passos ; Lipreri da Silva, Jean Carlos ; Carvalho, Maria Fernanda Lopes ; Lima, Keli</creator><creatorcontrib>Machado-Neto, João Agostinho ; Vicari, Hugo Passos ; Lipreri da Silva, Jean Carlos ; Carvalho, Maria Fernanda Lopes ; Lima, Keli</creatorcontrib><description>Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.
Transcript levels of
from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of
expression on clinical outcomes.
FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors.
expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low
expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways.
mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.
FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.</description><identifier>ISSN: 2219-6803</identifier><identifier>ISSN: 2218-676X</identifier><identifier>EISSN: 2219-6803</identifier><identifier>DOI: 10.21037/tcr-24-1091</identifier><identifier>PMID: 39697714</identifier><language>eng</language><publisher>China: AME Publishing Company</publisher><subject>Original</subject><ispartof>Translational cancer research, 2024-11, Vol.13 (11), p.6105-6116</ispartof><rights>2024 AME Publishing Company. All rights reserved.</rights><rights>2024 AME Publishing Company. All rights reserved. 2024 AME Publishing Company.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6121-3315 ; 0000-0002-2569-5959 ; 0000-0002-9712-6050 ; 0000-0002-2937-8109 ; 0000-0002-5498-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651780/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651780/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39697714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machado-Neto, João Agostinho</creatorcontrib><creatorcontrib>Vicari, Hugo Passos</creatorcontrib><creatorcontrib>Lipreri da Silva, Jean Carlos</creatorcontrib><creatorcontrib>Carvalho, Maria Fernanda Lopes</creatorcontrib><creatorcontrib>Lima, Keli</creatorcontrib><title>Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes</title><title>Translational cancer research</title><addtitle>Transl Cancer Res</addtitle><description>Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.
Transcript levels of
from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of
expression on clinical outcomes.
FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors.
expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low
expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways.
mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.
FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.</description><subject>Original</subject><issn>2219-6803</issn><issn>2218-676X</issn><issn>2219-6803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVULFOwzAUtBCIVqUbM_LIEvBznDhmQahqAanAAnPkOE5qlNjBTpAqfp4gSlWm93R3unvvEDoHckWBxPy6Vz6iLAIi4AhNKQURpRmJjw_2CZqH8E4IoQAZI-kpmsQiFZwDm6KvZat9bWyNq8Gq3jgbsKvw6ul5DdhY3G5140yJrXZdI0MbbkY0mHrTB1x51-LCOGMr51vZGxVw736QxtVGyQZLW-JuI0dS7bFmBIOSnQ5n6KSSTdDz3Zyht9XydfEQrV_uHxd366gDoCQqi6JgMpHZeH2ZcJBVyRKVxYJCyqDghAtdsYJxJRItUz0KhMgymihRCqp0PEO3v77dULS6VNr2XjZ5500r_TZ30uT_GWs2ee0-c4A0AT5WOEOXOwfvPgYd-rw1Qelm_EW7IeQxMA4xFVyM0ovDsH3KX-XxN0A2hv8</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Machado-Neto, João Agostinho</creator><creator>Vicari, Hugo Passos</creator><creator>Lipreri da Silva, Jean Carlos</creator><creator>Carvalho, Maria Fernanda Lopes</creator><creator>Lima, Keli</creator><general>AME Publishing Company</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6121-3315</orcidid><orcidid>https://orcid.org/0000-0002-2569-5959</orcidid><orcidid>https://orcid.org/0000-0002-9712-6050</orcidid><orcidid>https://orcid.org/0000-0002-2937-8109</orcidid><orcidid>https://orcid.org/0000-0002-5498-7539</orcidid></search><sort><creationdate>20241130</creationdate><title>Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes</title><author>Machado-Neto, João Agostinho ; Vicari, Hugo Passos ; Lipreri da Silva, Jean Carlos ; Carvalho, Maria Fernanda Lopes ; Lima, Keli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1120-dbbb4a5a8184d571afd45c83921641b7079ef4b47c95ea6e1af998825c9d92ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Machado-Neto, João Agostinho</creatorcontrib><creatorcontrib>Vicari, Hugo Passos</creatorcontrib><creatorcontrib>Lipreri da Silva, Jean Carlos</creatorcontrib><creatorcontrib>Carvalho, Maria Fernanda Lopes</creatorcontrib><creatorcontrib>Lima, Keli</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado-Neto, João Agostinho</au><au>Vicari, Hugo Passos</au><au>Lipreri da Silva, Jean Carlos</au><au>Carvalho, Maria Fernanda Lopes</au><au>Lima, Keli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes</atitle><jtitle>Translational cancer research</jtitle><addtitle>Transl Cancer Res</addtitle><date>2024-11-30</date><risdate>2024</risdate><volume>13</volume><issue>11</issue><spage>6105</spage><epage>6116</epage><pages>6105-6116</pages><issn>2219-6803</issn><issn>2218-676X</issn><eissn>2219-6803</eissn><abstract>Myeloid neoplasms encompass disorders characterized by abnormal myeloid cell proliferation and differentiation, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). Formin-like protein 1 (FMNL1) is involved in the regulation of the actin cytoskeleton and is predominantly expressed in hematopoietic cells. Given its role in leukemia cell proliferation, survival, migration, and invasion, this study investigates FMNL1 expression in normal hematopoiesis and myeloid neoplasms and explores associations with clinical-laboratory characteristics, mutational status, and survival outcomes in AML.
Transcript levels of
from several blood-forming cell populations and myeloid neoplasms were extracted from publicly available databases. Myeloid neoplasm cell lines were used for gene/protein expression and cell differentiation studies. Functional genomics analysis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA) AML study, and drug sensitivity predictions were investigated using Beat AML and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Statistical analyses assessed the impact of
expression on clinical outcomes.
FMNL1 was highly expressed in metamyelocytes, neutrophils, and monocytes compared to hematopoietic stem cells, and its expression increased with granulocytic differentiation. FMNL1 expression was elevated in AML and CML patients compared to healthy donors.
expression was not significantly associated with clinical-laboratory characteristics or survival outcomes but showed a higher frequency of WT1 transcription factor (WT1) mutations with low
expression in AML patients. High FMNL1 expression in AML correlated with immune response and inflammatory activity pathways.
mRNA levels influenced drug sensitivity in AML models, with correlations observed for specific antineoplastic agents.
FMNL1 plays a potential role in granulocyte differentiation and function, and its differential expression is linked to critical signaling pathways in leukemogenesis and inflammation. These findings highlight FMNL1's potential therapeutic implications in myeloid neoplasia, warranting further investigation.</abstract><cop>China</cop><pub>AME Publishing Company</pub><pmid>39697714</pmid><doi>10.21037/tcr-24-1091</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6121-3315</orcidid><orcidid>https://orcid.org/0000-0002-2569-5959</orcidid><orcidid>https://orcid.org/0000-0002-9712-6050</orcidid><orcidid>https://orcid.org/0000-0002-2937-8109</orcidid><orcidid>https://orcid.org/0000-0002-5498-7539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2219-6803 |
ispartof | Translational cancer research, 2024-11, Vol.13 (11), p.6105-6116 |
issn | 2219-6803 2218-676X 2219-6803 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11651780 |
source | PubMed Central |
subjects | Original |
title | Emerging functions of FMNL1 in myeloid neoplasms: insights from bioinformatics to biological and pharmacological landscapes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20functions%20of%20FMNL1%20in%20myeloid%20neoplasms:%20insights%20from%20bioinformatics%20to%20biological%20and%20pharmacological%20landscapes&rft.jtitle=Translational%20cancer%20research&rft.au=Machado-Neto,%20Jo%C3%A3o%20Agostinho&rft.date=2024-11-30&rft.volume=13&rft.issue=11&rft.spage=6105&rft.epage=6116&rft.pages=6105-6116&rft.issn=2219-6803&rft.eissn=2219-6803&rft_id=info:doi/10.21037/tcr-24-1091&rft_dat=%3Cproquest_pubme%3E3147132979%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1120-dbbb4a5a8184d571afd45c83921641b7079ef4b47c95ea6e1af998825c9d92ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147132979&rft_id=info:pmid/39697714&rfr_iscdi=true |