Loading…

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae

The halotolerant yeast Scheffersomyces spartinae , commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao fr...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2024-12, Vol.108 (1), p.539-539, Article 539
Main Authors: Sharma, Awkash, Liu, Xing, Yin, Jun, Yu, Pei-Jing, Qi, Lei, He, Min, Li, Ke-Jing, Zheng, Dao-Qiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c389t-d9e6f950379a1feef2be69c23bbe50a5d1bffa0e70cbff6a529132d983c31f923
container_end_page 539
container_issue 1
container_start_page 539
container_title Applied microbiology and biotechnology
container_volume 108
creator Sharma, Awkash
Liu, Xing
Yin, Jun
Yu, Pei-Jing
Qi, Lei
He, Min
Li, Ke-Jing
Zheng, Dao-Qiong
description The halotolerant yeast Scheffersomyces spartinae , commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao from seawater in Zhoushan City, China. Through scanning electron microscopy and flow cytometry, we characterized S. spartinae YMxiao cells as urn-shaped, demonstrating asymmetric division via budding, and possessing a diploid genome. Compared to the model yeast Saccharomyces cerevisiae , S. spartinae YMxiao exhibited greater tolerance to various stressful conditions. Furthermore, S. spartinae YMxiao was capable of utilizing xylose, mannitol, sorbitol, and arabinose as sole carbon sources for growth. We conducted whole-genome sequencing of S. spartinae YMxiao using a combination of Nanopore and Illumina technologies, resulting in a telomere-to-telomere complete genome assembly of 12 Mb. Genome annotation identified 5311 protein-coding genes, 214 tRNA genes, and 236 transposable elements distributed across 8 chromosomes. Comparative genomics between S. spartinae strains YMxiao and ARV011 revealed genomic variations and evolutionary patterns within this species. Notably, certain genes in S. spartinae strains were found to be under strong positive selection. Additionally, we developed a genetic manipulation protocol that successfully enabled gene knockouts in S. spartinae . Our findings not only enhance our understanding of the S. spartinae genome but also provide a foundation for future research into its potential biotechnological applications. Key points • The unique phenotypes and genetic characteristics of S. spartinae were disclosed. • Comparative genomics showed vast genetic variations between S. spartinae strains. • Genetic manipulation protocol was established for S. spartinae strain.
doi_str_mv 10.1007/s00253-024-13382-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147484687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d9e6f950379a1feef2be69c23bbe50a5d1bffa0e70cbff6a529132d983c31f923</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EotOBF2CBIrHpJuBLbMcrhCraIlVi0bLFcpzjGVeJPdgO0rw9nk4plwXCC9_Od_5z7B-hVwS_JRjLdxljylmLadcSxnrakidoRTpGWyxI9xStMJG8lVz1J-g05zuMCe2FeI5OmJKY9gyv0NdLCHH2trFbk4wtkHwu3ubGhLHZQIB6aGYT_G6ZTPExNNE1ZQv1LvkAzR5MLs2N3YJzkHKc9xZyk3cmFR8MvEDPnJkyvHxY1-jLxcfb86v2-vPlp_MP161lvSrtqEA4xTGTyhAH4OgAQlnKhgE4Nnwkg3MGg8S2boThVBFGR9Uzy4hTlK3R-6PubhlmGC2Eksykd8nXPvc6Gq__jAS_1Zv4XRMiuGJ1rNHZg0KK3xbIRc8-W5gmEyAuWTPCO8p70cn_QDvZ9Z3oD-ibv9C7uKRQv-KeopJIcahNj5RNMecE7rFxgvXBan20Wler9b3VdV6j178_-THlp7cVYEcg11DYQPpV-x-yPwBMIrZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147271763</pqid></control><display><type>article</type><title>Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae</title><source>Springer Nature</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Sharma, Awkash ; Liu, Xing ; Yin, Jun ; Yu, Pei-Jing ; Qi, Lei ; He, Min ; Li, Ke-Jing ; Zheng, Dao-Qiong</creator><creatorcontrib>Sharma, Awkash ; Liu, Xing ; Yin, Jun ; Yu, Pei-Jing ; Qi, Lei ; He, Min ; Li, Ke-Jing ; Zheng, Dao-Qiong</creatorcontrib><description>The halotolerant yeast Scheffersomyces spartinae , commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao from seawater in Zhoushan City, China. Through scanning electron microscopy and flow cytometry, we characterized S. spartinae YMxiao cells as urn-shaped, demonstrating asymmetric division via budding, and possessing a diploid genome. Compared to the model yeast Saccharomyces cerevisiae , S. spartinae YMxiao exhibited greater tolerance to various stressful conditions. Furthermore, S. spartinae YMxiao was capable of utilizing xylose, mannitol, sorbitol, and arabinose as sole carbon sources for growth. We conducted whole-genome sequencing of S. spartinae YMxiao using a combination of Nanopore and Illumina technologies, resulting in a telomere-to-telomere complete genome assembly of 12 Mb. Genome annotation identified 5311 protein-coding genes, 214 tRNA genes, and 236 transposable elements distributed across 8 chromosomes. Comparative genomics between S. spartinae strains YMxiao and ARV011 revealed genomic variations and evolutionary patterns within this species. Notably, certain genes in S. spartinae strains were found to be under strong positive selection. Additionally, we developed a genetic manipulation protocol that successfully enabled gene knockouts in S. spartinae . Our findings not only enhance our understanding of the S. spartinae genome but also provide a foundation for future research into its potential biotechnological applications. Key points • The unique phenotypes and genetic characteristics of S. spartinae were disclosed. • Comparative genomics showed vast genetic variations between S. spartinae strains. • Genetic manipulation protocol was established for S. spartinae strain.</description><identifier>ISSN: 0175-7598</identifier><identifier>ISSN: 1432-0614</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-024-13382-1</identifier><identifier>PMID: 39702830</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annotations ; Applied Genetics and Molecular Biotechnology ; Aquatic Organisms - genetics ; Arabinose ; Biomedical and Life Sciences ; Biotechnology ; carbon ; Carbon sources ; Chemical analysis ; China ; Chromosomes ; Diploids ; diploidy ; electron microscopy ; Flow cytometry ; Gene sequencing ; Genes ; Genetic diversity ; Genetic engineering ; genome assembly ; Genome, Fungal - genetics ; Genomes ; Genomics ; Industrial applications ; Life Sciences ; Mannitol ; Marine environment ; Microbial Genetics and Genomics ; Microbiology ; nanopores ; Phenotypes ; Phenotypic variations ; Positive selection ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomycetales - classification ; Saccharomycetales - genetics ; Saccharomycetales - metabolism ; Salinity tolerance ; salt tolerance ; Scanning electron microscopy ; Scheffersomyces ; Seawater ; Seawater - microbiology ; Sorbitol ; Spartina spartinae ; species ; Telomeres ; tRNA ; Water analysis ; Whole Genome Sequencing ; xylose ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2024-12, Vol.108 (1), p.539-539, Article 539</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c389t-d9e6f950379a1feef2be69c23bbe50a5d1bffa0e70cbff6a529132d983c31f923</cites><orcidid>0000-0001-9365-2339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39702830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Awkash</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Yu, Pei-Jing</creatorcontrib><creatorcontrib>Qi, Lei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Li, Ke-Jing</creatorcontrib><creatorcontrib>Zheng, Dao-Qiong</creatorcontrib><title>Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The halotolerant yeast Scheffersomyces spartinae , commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao from seawater in Zhoushan City, China. Through scanning electron microscopy and flow cytometry, we characterized S. spartinae YMxiao cells as urn-shaped, demonstrating asymmetric division via budding, and possessing a diploid genome. Compared to the model yeast Saccharomyces cerevisiae , S. spartinae YMxiao exhibited greater tolerance to various stressful conditions. Furthermore, S. spartinae YMxiao was capable of utilizing xylose, mannitol, sorbitol, and arabinose as sole carbon sources for growth. We conducted whole-genome sequencing of S. spartinae YMxiao using a combination of Nanopore and Illumina technologies, resulting in a telomere-to-telomere complete genome assembly of 12 Mb. Genome annotation identified 5311 protein-coding genes, 214 tRNA genes, and 236 transposable elements distributed across 8 chromosomes. Comparative genomics between S. spartinae strains YMxiao and ARV011 revealed genomic variations and evolutionary patterns within this species. Notably, certain genes in S. spartinae strains were found to be under strong positive selection. Additionally, we developed a genetic manipulation protocol that successfully enabled gene knockouts in S. spartinae . Our findings not only enhance our understanding of the S. spartinae genome but also provide a foundation for future research into its potential biotechnological applications. Key points • The unique phenotypes and genetic characteristics of S. spartinae were disclosed. • Comparative genomics showed vast genetic variations between S. spartinae strains. • Genetic manipulation protocol was established for S. spartinae strain.</description><subject>Annotations</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Aquatic Organisms - genetics</subject><subject>Arabinose</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>carbon</subject><subject>Carbon sources</subject><subject>Chemical analysis</subject><subject>China</subject><subject>Chromosomes</subject><subject>Diploids</subject><subject>diploidy</subject><subject>electron microscopy</subject><subject>Flow cytometry</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic engineering</subject><subject>genome assembly</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Industrial applications</subject><subject>Life Sciences</subject><subject>Mannitol</subject><subject>Marine environment</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>nanopores</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Positive selection</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomycetales - classification</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - metabolism</subject><subject>Salinity tolerance</subject><subject>salt tolerance</subject><subject>Scanning electron microscopy</subject><subject>Scheffersomyces</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Sorbitol</subject><subject>Spartina spartinae</subject><subject>species</subject><subject>Telomeres</subject><subject>tRNA</subject><subject>Water analysis</subject><subject>Whole Genome Sequencing</subject><subject>xylose</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1DAUhi0EotOBF2CBIrHpJuBLbMcrhCraIlVi0bLFcpzjGVeJPdgO0rw9nk4plwXCC9_Od_5z7B-hVwS_JRjLdxljylmLadcSxnrakidoRTpGWyxI9xStMJG8lVz1J-g05zuMCe2FeI5OmJKY9gyv0NdLCHH2trFbk4wtkHwu3ubGhLHZQIB6aGYT_G6ZTPExNNE1ZQv1LvkAzR5MLs2N3YJzkHKc9xZyk3cmFR8MvEDPnJkyvHxY1-jLxcfb86v2-vPlp_MP161lvSrtqEA4xTGTyhAH4OgAQlnKhgE4Nnwkg3MGg8S2boThVBFGR9Uzy4hTlK3R-6PubhlmGC2Eksykd8nXPvc6Gq__jAS_1Zv4XRMiuGJ1rNHZg0KK3xbIRc8-W5gmEyAuWTPCO8p70cn_QDvZ9Z3oD-ibv9C7uKRQv-KeopJIcahNj5RNMecE7rFxgvXBan20Wler9b3VdV6j178_-THlp7cVYEcg11DYQPpV-x-yPwBMIrZq</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Sharma, Awkash</creator><creator>Liu, Xing</creator><creator>Yin, Jun</creator><creator>Yu, Pei-Jing</creator><creator>Qi, Lei</creator><creator>He, Min</creator><creator>Li, Ke-Jing</creator><creator>Zheng, Dao-Qiong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9365-2339</orcidid></search><sort><creationdate>20241201</creationdate><title>Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae</title><author>Sharma, Awkash ; Liu, Xing ; Yin, Jun ; Yu, Pei-Jing ; Qi, Lei ; He, Min ; Li, Ke-Jing ; Zheng, Dao-Qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d9e6f950379a1feef2be69c23bbe50a5d1bffa0e70cbff6a529132d983c31f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Aquatic Organisms - genetics</topic><topic>Arabinose</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>carbon</topic><topic>Carbon sources</topic><topic>Chemical analysis</topic><topic>China</topic><topic>Chromosomes</topic><topic>Diploids</topic><topic>diploidy</topic><topic>electron microscopy</topic><topic>Flow cytometry</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic engineering</topic><topic>genome assembly</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Industrial applications</topic><topic>Life Sciences</topic><topic>Mannitol</topic><topic>Marine environment</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>nanopores</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Positive selection</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomycetales - classification</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - metabolism</topic><topic>Salinity tolerance</topic><topic>salt tolerance</topic><topic>Scanning electron microscopy</topic><topic>Scheffersomyces</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Sorbitol</topic><topic>Spartina spartinae</topic><topic>species</topic><topic>Telomeres</topic><topic>tRNA</topic><topic>Water analysis</topic><topic>Whole Genome Sequencing</topic><topic>xylose</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Awkash</creatorcontrib><creatorcontrib>Liu, Xing</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Yu, Pei-Jing</creatorcontrib><creatorcontrib>Qi, Lei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Li, Ke-Jing</creatorcontrib><creatorcontrib>Zheng, Dao-Qiong</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Awkash</au><au>Liu, Xing</au><au>Yin, Jun</au><au>Yu, Pei-Jing</au><au>Qi, Lei</au><au>He, Min</au><au>Li, Ke-Jing</au><au>Zheng, Dao-Qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>108</volume><issue>1</issue><spage>539</spage><epage>539</epage><pages>539-539</pages><artnum>539</artnum><issn>0175-7598</issn><issn>1432-0614</issn><eissn>1432-0614</eissn><abstract>The halotolerant yeast Scheffersomyces spartinae , commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao from seawater in Zhoushan City, China. Through scanning electron microscopy and flow cytometry, we characterized S. spartinae YMxiao cells as urn-shaped, demonstrating asymmetric division via budding, and possessing a diploid genome. Compared to the model yeast Saccharomyces cerevisiae , S. spartinae YMxiao exhibited greater tolerance to various stressful conditions. Furthermore, S. spartinae YMxiao was capable of utilizing xylose, mannitol, sorbitol, and arabinose as sole carbon sources for growth. We conducted whole-genome sequencing of S. spartinae YMxiao using a combination of Nanopore and Illumina technologies, resulting in a telomere-to-telomere complete genome assembly of 12 Mb. Genome annotation identified 5311 protein-coding genes, 214 tRNA genes, and 236 transposable elements distributed across 8 chromosomes. Comparative genomics between S. spartinae strains YMxiao and ARV011 revealed genomic variations and evolutionary patterns within this species. Notably, certain genes in S. spartinae strains were found to be under strong positive selection. Additionally, we developed a genetic manipulation protocol that successfully enabled gene knockouts in S. spartinae . Our findings not only enhance our understanding of the S. spartinae genome but also provide a foundation for future research into its potential biotechnological applications. Key points • The unique phenotypes and genetic characteristics of S. spartinae were disclosed. • Comparative genomics showed vast genetic variations between S. spartinae strains. • Genetic manipulation protocol was established for S. spartinae strain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39702830</pmid><doi>10.1007/s00253-024-13382-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9365-2339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2024-12, Vol.108 (1), p.539-539, Article 539
issn 0175-7598
1432-0614
1432-0614
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11659333
source Springer Nature; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Annotations
Applied Genetics and Molecular Biotechnology
Aquatic Organisms - genetics
Arabinose
Biomedical and Life Sciences
Biotechnology
carbon
Carbon sources
Chemical analysis
China
Chromosomes
Diploids
diploidy
electron microscopy
Flow cytometry
Gene sequencing
Genes
Genetic diversity
Genetic engineering
genome assembly
Genome, Fungal - genetics
Genomes
Genomics
Industrial applications
Life Sciences
Mannitol
Marine environment
Microbial Genetics and Genomics
Microbiology
nanopores
Phenotypes
Phenotypic variations
Positive selection
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomycetales - classification
Saccharomycetales - genetics
Saccharomycetales - metabolism
Salinity tolerance
salt tolerance
Scanning electron microscopy
Scheffersomyces
Seawater
Seawater - microbiology
Sorbitol
Spartina spartinae
species
Telomeres
tRNA
Water analysis
Whole Genome Sequencing
xylose
Yeast
Yeasts
title Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20characteristics%20and%20genetic%20manipulation%20of%20the%20marine%20yeast%20Scheffersomyces%20spartinae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Sharma,%20Awkash&rft.date=2024-12-01&rft.volume=108&rft.issue=1&rft.spage=539&rft.epage=539&rft.pages=539-539&rft.artnum=539&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-024-13382-1&rft_dat=%3Cproquest_pubme%3E3147484687%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-d9e6f950379a1feef2be69c23bbe50a5d1bffa0e70cbff6a529132d983c31f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3147271763&rft_id=info:pmid/39702830&rfr_iscdi=true