Loading…

Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning

We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 2024-12, Vol.92 (6), p.703-719
Main Author: Smiatek, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63
container_end_page 719
container_issue 6
container_start_page 703
container_title Journal of molecular evolution
container_volume 92
creator Smiatek, Jens
description We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.
doi_str_mv 10.1007/s00239-024-10195-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11703993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099798393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwCfiVOGaDqlF5SNPCoqwtx7mZceXYUzseaf49nk4pLYt6YS_Od499fBB6S_BHgrH4lDCmTNaY8ppgIpu6e4YWhDNaH7bnaFF0WtOO8xP0KqVrjIloJHuJTpikWDSCLFD-Fa03dusgVWGsLoIDk52O1fkuuDzb4D9Xy-ANbOdUjTFM1WXwNdxk62wfbZ6qqw3EKQx7rydrChNiNW-gushutg524A5EiPuD_Qp09NavX6MXo3YJ3tydp-j31_Or5fd69fPbj-XZqjaso3OteT_woQfRj0CgaQlo2cpRwiB4Q8eRNpRx2ZSUsiGEEdpK3I1SsPIZnTAtO0Vfjr7b3E8wGPBz1E5to5103KugrXqseLtR67BThAjMpGTF4cOdQww3GdKsJpsMOKc9hJwUw1IK2bFb9P1_6HXI0Zd8ihFeVktYUyh6pEwMKUUY719DsDrUqo61qlKruq1VdWXo3cMc9yN_eywAOwKpSH4N8d_dT9j-ASzJrxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144446135</pqid></control><display><type>article</type><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Smiatek, Jens</creator><creatorcontrib>Smiatek, Jens</creatorcontrib><description>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</description><identifier>ISSN: 0022-2844</identifier><identifier>ISSN: 1432-1432</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-024-10195-8</identifier><identifier>PMID: 39207571</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Animal Genetics and Genomics ; Biological activity ; Biological effects ; Biomedical and Life Sciences ; Cell Biology ; Entropy ; Equilibrium ; Evolution ; Evolution, Molecular ; Evolutionary Biology ; Gene transfer ; Genes ; Genotype &amp; phenotype ; Learning ; Learning - physiology ; Learning theory ; Life Sciences ; Microbiology ; Models, Genetic ; Molecular evolution ; Mutation ; Nonequilibrium thermodynamics ; Open systems ; Original ; Original Article ; Plant Genetics and Genomics ; Plant Sciences ; Principles ; Thermodynamics ; Transfer learning</subject><ispartof>Journal of molecular evolution, 2024-12, Vol.92 (6), p.703-719</ispartof><rights>The Author(s) 2024 corrected publication 2024</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024, corrected publication 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</cites><orcidid>0000-0002-3821-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39207571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smiatek, Jens</creatorcontrib><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</description><subject>Adaptation</subject><subject>Animal Genetics and Genomics</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Entropy</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genotype &amp; phenotype</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Learning theory</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>Molecular evolution</subject><subject>Mutation</subject><subject>Nonequilibrium thermodynamics</subject><subject>Open systems</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Principles</subject><subject>Thermodynamics</subject><subject>Transfer learning</subject><issn>0022-2844</issn><issn>1432-1432</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwCfiVOGaDqlF5SNPCoqwtx7mZceXYUzseaf49nk4pLYt6YS_Od499fBB6S_BHgrH4lDCmTNaY8ppgIpu6e4YWhDNaH7bnaFF0WtOO8xP0KqVrjIloJHuJTpikWDSCLFD-Fa03dusgVWGsLoIDk52O1fkuuDzb4D9Xy-ANbOdUjTFM1WXwNdxk62wfbZ6qqw3EKQx7rydrChNiNW-gushutg524A5EiPuD_Qp09NavX6MXo3YJ3tydp-j31_Or5fd69fPbj-XZqjaso3OteT_woQfRj0CgaQlo2cpRwiB4Q8eRNpRx2ZSUsiGEEdpK3I1SsPIZnTAtO0Vfjr7b3E8wGPBz1E5to5103KugrXqseLtR67BThAjMpGTF4cOdQww3GdKsJpsMOKc9hJwUw1IK2bFb9P1_6HXI0Zd8ihFeVktYUyh6pEwMKUUY719DsDrUqo61qlKruq1VdWXo3cMc9yN_eywAOwKpSH4N8d_dT9j-ASzJrxU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Smiatek, Jens</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3821-0690</orcidid></search><sort><creationdate>20241201</creationdate><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><author>Smiatek, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Animal Genetics and Genomics</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Entropy</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genotype &amp; phenotype</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Learning theory</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>Molecular evolution</topic><topic>Mutation</topic><topic>Nonequilibrium thermodynamics</topic><topic>Open systems</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Principles</topic><topic>Thermodynamics</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smiatek, Jens</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smiatek, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>703</spage><epage>719</epage><pages>703-719</pages><issn>0022-2844</issn><issn>1432-1432</issn><eissn>1432-1432</eissn><abstract>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39207571</pmid><doi>10.1007/s00239-024-10195-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3821-0690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2844
ispartof Journal of molecular evolution, 2024-12, Vol.92 (6), p.703-719
issn 0022-2844
1432-1432
1432-1432
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11703993
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Adaptation
Animal Genetics and Genomics
Biological activity
Biological effects
Biomedical and Life Sciences
Cell Biology
Entropy
Equilibrium
Evolution
Evolution, Molecular
Evolutionary Biology
Gene transfer
Genes
Genotype & phenotype
Learning
Learning - physiology
Learning theory
Life Sciences
Microbiology
Models, Genetic
Molecular evolution
Mutation
Nonequilibrium thermodynamics
Open systems
Original
Original Article
Plant Genetics and Genomics
Plant Sciences
Principles
Thermodynamics
Transfer learning
title Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20of%20Molecular%20Evolution:%20Concepts%20from%20Non-equilibrium%20Thermodynamics%20for%20the%20Multilevel%20Theory%20of%20Learning&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Smiatek,%20Jens&rft.date=2024-12-01&rft.volume=92&rft.issue=6&rft.spage=703&rft.epage=719&rft.pages=703-719&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-024-10195-8&rft_dat=%3Cproquest_pubme%3E3099798393%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144446135&rft_id=info:pmid/39207571&rfr_iscdi=true