Loading…
Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning
We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expr...
Saved in:
Published in: | Journal of molecular evolution 2024-12, Vol.92 (6), p.703-719 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63 |
container_end_page | 719 |
container_issue | 6 |
container_start_page | 703 |
container_title | Journal of molecular evolution |
container_volume | 92 |
creator | Smiatek, Jens |
description | We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes. |
doi_str_mv | 10.1007/s00239-024-10195-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11703993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099798393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwCfiVOGaDqlF5SNPCoqwtx7mZceXYUzseaf49nk4pLYt6YS_Od499fBB6S_BHgrH4lDCmTNaY8ppgIpu6e4YWhDNaH7bnaFF0WtOO8xP0KqVrjIloJHuJTpikWDSCLFD-Fa03dusgVWGsLoIDk52O1fkuuDzb4D9Xy-ANbOdUjTFM1WXwNdxk62wfbZ6qqw3EKQx7rydrChNiNW-gushutg524A5EiPuD_Qp09NavX6MXo3YJ3tydp-j31_Or5fd69fPbj-XZqjaso3OteT_woQfRj0CgaQlo2cpRwiB4Q8eRNpRx2ZSUsiGEEdpK3I1SsPIZnTAtO0Vfjr7b3E8wGPBz1E5to5103KugrXqseLtR67BThAjMpGTF4cOdQww3GdKsJpsMOKc9hJwUw1IK2bFb9P1_6HXI0Zd8ihFeVktYUyh6pEwMKUUY719DsDrUqo61qlKruq1VdWXo3cMc9yN_eywAOwKpSH4N8d_dT9j-ASzJrxU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144446135</pqid></control><display><type>article</type><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Smiatek, Jens</creator><creatorcontrib>Smiatek, Jens</creatorcontrib><description>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</description><identifier>ISSN: 0022-2844</identifier><identifier>ISSN: 1432-1432</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-024-10195-8</identifier><identifier>PMID: 39207571</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Animal Genetics and Genomics ; Biological activity ; Biological effects ; Biomedical and Life Sciences ; Cell Biology ; Entropy ; Equilibrium ; Evolution ; Evolution, Molecular ; Evolutionary Biology ; Gene transfer ; Genes ; Genotype & phenotype ; Learning ; Learning - physiology ; Learning theory ; Life Sciences ; Microbiology ; Models, Genetic ; Molecular evolution ; Mutation ; Nonequilibrium thermodynamics ; Open systems ; Original ; Original Article ; Plant Genetics and Genomics ; Plant Sciences ; Principles ; Thermodynamics ; Transfer learning</subject><ispartof>Journal of molecular evolution, 2024-12, Vol.92 (6), p.703-719</ispartof><rights>The Author(s) 2024 corrected publication 2024</rights><rights>2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024, corrected publication 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</cites><orcidid>0000-0002-3821-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39207571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smiatek, Jens</creatorcontrib><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</description><subject>Adaptation</subject><subject>Animal Genetics and Genomics</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Entropy</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genotype & phenotype</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Learning theory</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>Molecular evolution</subject><subject>Mutation</subject><subject>Nonequilibrium thermodynamics</subject><subject>Open systems</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Principles</subject><subject>Thermodynamics</subject><subject>Transfer learning</subject><issn>0022-2844</issn><issn>1432-1432</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhD7BAkdiwCfiVOGaDqlF5SNPCoqwtx7mZceXYUzseaf49nk4pLYt6YS_Od499fBB6S_BHgrH4lDCmTNaY8ppgIpu6e4YWhDNaH7bnaFF0WtOO8xP0KqVrjIloJHuJTpikWDSCLFD-Fa03dusgVWGsLoIDk52O1fkuuDzb4D9Xy-ANbOdUjTFM1WXwNdxk62wfbZ6qqw3EKQx7rydrChNiNW-gushutg524A5EiPuD_Qp09NavX6MXo3YJ3tydp-j31_Or5fd69fPbj-XZqjaso3OteT_woQfRj0CgaQlo2cpRwiB4Q8eRNpRx2ZSUsiGEEdpK3I1SsPIZnTAtO0Vfjr7b3E8wGPBz1E5to5103KugrXqseLtR67BThAjMpGTF4cOdQww3GdKsJpsMOKc9hJwUw1IK2bFb9P1_6HXI0Zd8ihFeVktYUyh6pEwMKUUY719DsDrUqo61qlKruq1VdWXo3cMc9yN_eywAOwKpSH4N8d_dT9j-ASzJrxU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Smiatek, Jens</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3821-0690</orcidid></search><sort><creationdate>20241201</creationdate><title>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</title><author>Smiatek, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Animal Genetics and Genomics</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Entropy</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genotype & phenotype</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Learning theory</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>Molecular evolution</topic><topic>Mutation</topic><topic>Nonequilibrium thermodynamics</topic><topic>Open systems</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Principles</topic><topic>Thermodynamics</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smiatek, Jens</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smiatek, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>703</spage><epage>719</epage><pages>703-719</pages><issn>0022-2844</issn><issn>1432-1432</issn><eissn>1432-1432</eissn><abstract>We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39207571</pmid><doi>10.1007/s00239-024-10195-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3821-0690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 2024-12, Vol.92 (6), p.703-719 |
issn | 0022-2844 1432-1432 1432-1432 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11703993 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Adaptation Animal Genetics and Genomics Biological activity Biological effects Biomedical and Life Sciences Cell Biology Entropy Equilibrium Evolution Evolution, Molecular Evolutionary Biology Gene transfer Genes Genotype & phenotype Learning Learning - physiology Learning theory Life Sciences Microbiology Models, Genetic Molecular evolution Mutation Nonequilibrium thermodynamics Open systems Original Original Article Plant Genetics and Genomics Plant Sciences Principles Thermodynamics Transfer learning |
title | Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principles%20of%20Molecular%20Evolution:%20Concepts%20from%20Non-equilibrium%20Thermodynamics%20for%20the%20Multilevel%20Theory%20of%20Learning&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Smiatek,%20Jens&rft.date=2024-12-01&rft.volume=92&rft.issue=6&rft.spage=703&rft.epage=719&rft.pages=703-719&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-024-10195-8&rft_dat=%3Cproquest_pubme%3E3099798393%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-a4bd4dbe7bfe1e561ea969f9ed7452ff252349502295113126908f97319587c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144446135&rft_id=info:pmid/39207571&rfr_iscdi=true |