Loading…

Limitations of silencing at native yeast telomeres

Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to t...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 1999-05, Vol.18 (9), p.2538-2550
Main Authors: Pryde, F.E, Louis, E.J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33
cites
container_end_page 2550
container_issue 9
container_start_page 2538
container_title The EMBO journal
container_volume 18
creator Pryde, F.E
Louis, E.J
description Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of PPR1 , the transactivator of URA3 , and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Δ causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations. orc2‐1 and orc5‐1 have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on SIR2 , SIR3 , SIR4 and HDF1 . The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.
doi_str_mv 10.1093/emboj/18.9.2538
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69730653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhS0EYsrAmhUQsWCX1teOXxskGA0dUAHxGGBnOYlTXJJ4sJOB_ntcMioFCc3Kku93jo_vQeg-4DlgRRe2K_1mAXKu5oRReQPNoOA4J1iwm2iGCYe8AKmO0J0YNxhjJgXcRkeACZHAxQyRlevcYAbn-5j5JouutX3l-nVmhqxP95c221oTh2ywre9ssPEuutWYNtp7V-cxOn9x-vHkLF-9Xb48ebbKKy6FyIsGV8BB8IJKSQHbqlS8EEBYYcuGlDXGqqqMNWUtBJe0Ng00qiamlkqWJaXH6OnkezGWna0r2w_BtPoiuM6ErfbG6b8nvfuq1_5SAwiglCWDJ1cGwX8fbRx052Jl29b01o9RcyUo5oxeC4IgRKlCJfDxP-DGj6FPW9CgWNo2w7tnFxNUBR9jsM0-MmC9a03_bk2D1ErvWkuKh4c_PeCnmhIgJ-BHqmd7nZ8-ff38lWAqKXdSPEljUvVrGw4i_zfOg0mS-h-D3T_3xzKf5i4O9ud-bMI3nbIKpj-_Wep34gv_tHxP9FniH018Y7w26-CiPv9AMFBMpEprU_QXINHXmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195261505</pqid></control><display><type>article</type><title>Limitations of silencing at native yeast telomeres</title><source>PubMed Central</source><creator>Pryde, F.E ; Louis, E.J</creator><creatorcontrib>Pryde, F.E ; Louis, E.J</creatorcontrib><description>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of PPR1 , the transactivator of URA3 , and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Δ causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations. orc2‐1 and orc5‐1 have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on SIR2 , SIR3 , SIR4 and HDF1 . The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.9.2538</identifier><identifier>PMID: 10228167</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Base Sequence ; Binding Sites - genetics ; chromatin ; Chromatin - metabolism ; Consensus Sequence ; DNA-binding proteins ; DNA-Binding Proteins - metabolism ; Fungal Proteins - genetics ; gene expression ; Gene Expression Regulation, Fungal ; genetic regulation ; Models, Genetic ; Molecular Sequence Data ; Mutation ; native telomeres ; Origin Recognition Complex ; Protein Binding ; proto-silencers ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; reporter genes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; silencing ; subtelomeric core x element ; subtelomeric y' element ; Telomere ; telomeres ; Trans-Activators - metabolism ; Transcription Factors - metabolism ; ura3 gene ; X elements ; Yeasts ; Y′ elements</subject><ispartof>The EMBO journal, 1999-05, Vol.18 (9), p.2538-2550</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 04, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171335/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171335/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10228167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pryde, F.E</creatorcontrib><creatorcontrib>Louis, E.J</creatorcontrib><title>Limitations of silencing at native yeast telomeres</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of PPR1 , the transactivator of URA3 , and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Δ causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations. orc2‐1 and orc5‐1 have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on SIR2 , SIR3 , SIR4 and HDF1 . The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</description><subject>Base Sequence</subject><subject>Binding Sites - genetics</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Consensus Sequence</subject><subject>DNA-binding proteins</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>genetic regulation</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>native telomeres</subject><subject>Origin Recognition Complex</subject><subject>Protein Binding</subject><subject>proto-silencers</subject><subject>Recombination, Genetic</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>reporter genes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>silencing</subject><subject>subtelomeric core x element</subject><subject>subtelomeric y' element</subject><subject>Telomere</subject><subject>telomeres</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>ura3 gene</subject><subject>X elements</subject><subject>Yeasts</subject><subject>Y′ elements</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkUuP0zAUhS0EYsrAmhUQsWCX1teOXxskGA0dUAHxGGBnOYlTXJJ4sJOB_ntcMioFCc3Kku93jo_vQeg-4DlgRRe2K_1mAXKu5oRReQPNoOA4J1iwm2iGCYe8AKmO0J0YNxhjJgXcRkeACZHAxQyRlevcYAbn-5j5JouutX3l-nVmhqxP95c221oTh2ywre9ssPEuutWYNtp7V-cxOn9x-vHkLF-9Xb48ebbKKy6FyIsGV8BB8IJKSQHbqlS8EEBYYcuGlDXGqqqMNWUtBJe0Ng00qiamlkqWJaXH6OnkezGWna0r2w_BtPoiuM6ErfbG6b8nvfuq1_5SAwiglCWDJ1cGwX8fbRx052Jl29b01o9RcyUo5oxeC4IgRKlCJfDxP-DGj6FPW9CgWNo2w7tnFxNUBR9jsM0-MmC9a03_bk2D1ErvWkuKh4c_PeCnmhIgJ-BHqmd7nZ8-ff38lWAqKXdSPEljUvVrGw4i_zfOg0mS-h-D3T_3xzKf5i4O9ud-bMI3nbIKpj-_Wep34gv_tHxP9FniH018Y7w26-CiPv9AMFBMpEprU_QXINHXmQ</recordid><startdate>19990504</startdate><enddate>19990504</enddate><creator>Pryde, F.E</creator><creator>Louis, E.J</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990504</creationdate><title>Limitations of silencing at native yeast telomeres</title><author>Pryde, F.E ; Louis, E.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Base Sequence</topic><topic>Binding Sites - genetics</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Consensus Sequence</topic><topic>DNA-binding proteins</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>genetic regulation</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>native telomeres</topic><topic>Origin Recognition Complex</topic><topic>Protein Binding</topic><topic>proto-silencers</topic><topic>Recombination, Genetic</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>reporter genes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>silencing</topic><topic>subtelomeric core x element</topic><topic>subtelomeric y' element</topic><topic>Telomere</topic><topic>telomeres</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>ura3 gene</topic><topic>X elements</topic><topic>Yeasts</topic><topic>Y′ elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryde, F.E</creatorcontrib><creatorcontrib>Louis, E.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryde, F.E</au><au>Louis, E.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of silencing at native yeast telomeres</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-05-04</date><risdate>1999</risdate><volume>18</volume><issue>9</issue><spage>2538</spage><epage>2550</epage><pages>2538-2550</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of PPR1 , the transactivator of URA3 , and SIR3 overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends. sir1Δ causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations. orc2‐1 and orc5‐1 have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on SIR2 , SIR3 , SIR4 and HDF1 . The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10228167</pmid><doi>10.1093/emboj/18.9.2538</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1999-05, Vol.18 (9), p.2538-2550
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171335
source PubMed Central
subjects Base Sequence
Binding Sites - genetics
chromatin
Chromatin - metabolism
Consensus Sequence
DNA-binding proteins
DNA-Binding Proteins - metabolism
Fungal Proteins - genetics
gene expression
Gene Expression Regulation, Fungal
genetic regulation
Models, Genetic
Molecular Sequence Data
Mutation
native telomeres
Origin Recognition Complex
Protein Binding
proto-silencers
Recombination, Genetic
Repetitive Sequences, Nucleic Acid
reporter genes
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
silencing
subtelomeric core x element
subtelomeric y' element
Telomere
telomeres
Trans-Activators - metabolism
Transcription Factors - metabolism
ura3 gene
X elements
Yeasts
Y′ elements
title Limitations of silencing at native yeast telomeres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20silencing%20at%20native%20yeast%20telomeres&rft.jtitle=The%20EMBO%20journal&rft.au=Pryde,%20F.E&rft.date=1999-05-04&rft.volume=18&rft.issue=9&rft.spage=2538&rft.epage=2550&rft.pages=2538-2550&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.9.2538&rft_dat=%3Cproquest_pubme%3E69730653%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195261505&rft_id=info:pmid/10228167&rfr_iscdi=true