Loading…
Limitations of silencing at native yeast telomeres
Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of URA3 inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to t...
Saved in:
Published in: | The EMBO journal 1999-05, Vol.18 (9), p.2538-2550 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33 |
---|---|
cites | |
container_end_page | 2550 |
container_issue | 9 |
container_start_page | 2538 |
container_title | The EMBO journal |
container_volume | 18 |
creator | Pryde, F.E Louis, E.J |
description | Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of
URA3
inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of
PPR1
, the transactivator of
URA3
, and
SIR3
overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends.
sir1Δ
causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations.
orc2‐1
and
orc5‐1
have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on
SIR2
,
SIR3
,
SIR4
and
HDF1
. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin. |
doi_str_mv | 10.1093/emboj/18.9.2538 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69730653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhS0EYsrAmhUQsWCX1teOXxskGA0dUAHxGGBnOYlTXJJ4sJOB_ntcMioFCc3Kku93jo_vQeg-4DlgRRe2K_1mAXKu5oRReQPNoOA4J1iwm2iGCYe8AKmO0J0YNxhjJgXcRkeACZHAxQyRlevcYAbn-5j5JouutX3l-nVmhqxP95c221oTh2ywre9ssPEuutWYNtp7V-cxOn9x-vHkLF-9Xb48ebbKKy6FyIsGV8BB8IJKSQHbqlS8EEBYYcuGlDXGqqqMNWUtBJe0Ng00qiamlkqWJaXH6OnkezGWna0r2w_BtPoiuM6ErfbG6b8nvfuq1_5SAwiglCWDJ1cGwX8fbRx052Jl29b01o9RcyUo5oxeC4IgRKlCJfDxP-DGj6FPW9CgWNo2w7tnFxNUBR9jsM0-MmC9a03_bk2D1ErvWkuKh4c_PeCnmhIgJ-BHqmd7nZ8-ff38lWAqKXdSPEljUvVrGw4i_zfOg0mS-h-D3T_3xzKf5i4O9ud-bMI3nbIKpj-_Wep34gv_tHxP9FniH018Y7w26-CiPv9AMFBMpEprU_QXINHXmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195261505</pqid></control><display><type>article</type><title>Limitations of silencing at native yeast telomeres</title><source>PubMed Central</source><creator>Pryde, F.E ; Louis, E.J</creator><creatorcontrib>Pryde, F.E ; Louis, E.J</creatorcontrib><description>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of
URA3
inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of
PPR1
, the transactivator of
URA3
, and
SIR3
overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends.
sir1Δ
causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations.
orc2‐1
and
orc5‐1
have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on
SIR2
,
SIR3
,
SIR4
and
HDF1
. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.9.2538</identifier><identifier>PMID: 10228167</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Base Sequence ; Binding Sites - genetics ; chromatin ; Chromatin - metabolism ; Consensus Sequence ; DNA-binding proteins ; DNA-Binding Proteins - metabolism ; Fungal Proteins - genetics ; gene expression ; Gene Expression Regulation, Fungal ; genetic regulation ; Models, Genetic ; Molecular Sequence Data ; Mutation ; native telomeres ; Origin Recognition Complex ; Protein Binding ; proto-silencers ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; reporter genes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; silencing ; subtelomeric core x element ; subtelomeric y' element ; Telomere ; telomeres ; Trans-Activators - metabolism ; Transcription Factors - metabolism ; ura3 gene ; X elements ; Yeasts ; Y′ elements</subject><ispartof>The EMBO journal, 1999-05, Vol.18 (9), p.2538-2550</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 04, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171335/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171335/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10228167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pryde, F.E</creatorcontrib><creatorcontrib>Louis, E.J</creatorcontrib><title>Limitations of silencing at native yeast telomeres</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of
URA3
inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of
PPR1
, the transactivator of
URA3
, and
SIR3
overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends.
sir1Δ
causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations.
orc2‐1
and
orc5‐1
have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on
SIR2
,
SIR3
,
SIR4
and
HDF1
. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</description><subject>Base Sequence</subject><subject>Binding Sites - genetics</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Consensus Sequence</subject><subject>DNA-binding proteins</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>genetic regulation</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>native telomeres</subject><subject>Origin Recognition Complex</subject><subject>Protein Binding</subject><subject>proto-silencers</subject><subject>Recombination, Genetic</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>reporter genes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>silencing</subject><subject>subtelomeric core x element</subject><subject>subtelomeric y' element</subject><subject>Telomere</subject><subject>telomeres</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>ura3 gene</subject><subject>X elements</subject><subject>Yeasts</subject><subject>Y′ elements</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkUuP0zAUhS0EYsrAmhUQsWCX1teOXxskGA0dUAHxGGBnOYlTXJJ4sJOB_ntcMioFCc3Kku93jo_vQeg-4DlgRRe2K_1mAXKu5oRReQPNoOA4J1iwm2iGCYe8AKmO0J0YNxhjJgXcRkeACZHAxQyRlevcYAbn-5j5JouutX3l-nVmhqxP95c221oTh2ywre9ssPEuutWYNtp7V-cxOn9x-vHkLF-9Xb48ebbKKy6FyIsGV8BB8IJKSQHbqlS8EEBYYcuGlDXGqqqMNWUtBJe0Ng00qiamlkqWJaXH6OnkezGWna0r2w_BtPoiuM6ErfbG6b8nvfuq1_5SAwiglCWDJ1cGwX8fbRx052Jl29b01o9RcyUo5oxeC4IgRKlCJfDxP-DGj6FPW9CgWNo2w7tnFxNUBR9jsM0-MmC9a03_bk2D1ErvWkuKh4c_PeCnmhIgJ-BHqmd7nZ8-ff38lWAqKXdSPEljUvVrGw4i_zfOg0mS-h-D3T_3xzKf5i4O9ud-bMI3nbIKpj-_Wep34gv_tHxP9FniH018Y7w26-CiPv9AMFBMpEprU_QXINHXmQ</recordid><startdate>19990504</startdate><enddate>19990504</enddate><creator>Pryde, F.E</creator><creator>Louis, E.J</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990504</creationdate><title>Limitations of silencing at native yeast telomeres</title><author>Pryde, F.E ; Louis, E.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Base Sequence</topic><topic>Binding Sites - genetics</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Consensus Sequence</topic><topic>DNA-binding proteins</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>genetic regulation</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>native telomeres</topic><topic>Origin Recognition Complex</topic><topic>Protein Binding</topic><topic>proto-silencers</topic><topic>Recombination, Genetic</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>reporter genes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>silencing</topic><topic>subtelomeric core x element</topic><topic>subtelomeric y' element</topic><topic>Telomere</topic><topic>telomeres</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>ura3 gene</topic><topic>X elements</topic><topic>Yeasts</topic><topic>Y′ elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryde, F.E</creatorcontrib><creatorcontrib>Louis, E.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryde, F.E</au><au>Louis, E.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of silencing at native yeast telomeres</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-05-04</date><risdate>1999</risdate><volume>18</volume><issue>9</issue><spage>2538</spage><epage>2550</epage><pages>2538-2550</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Silencing at native yeast telomeres, in which the subtelomeric elements are intact, is different from silencing at terminal truncations. The repression of
URA3
inserted in different subtelomeric positions at several chromosome ends was investigated. Many ends exhibit very little silencing close to the telomere, while others exhibit substantial repression in limited domains. Silencing at native ends is discontinuous, with maximal repression found adjacent to the ARS consensus sequence in the subtelomeric core X element. The level of repression declines precipitously towards the centromere. Mutation of the ARS sequence or an adjacent Abf1p‐binding site significantly reduces silencing. The subtelomeric Y′ elements are resistant to silencing along their whole length, yet silencing can be re‐established at the proximal X element. Deletion of
PPR1
, the transactivator of
URA3
, and
SIR3
overexpression do not increase repression or extend spreading of silencing to the same extent as with terminally truncated ends.
sir1Δ
causes partial derepression at X‐ACS, in contrast to the lack of effect seen at terminal truncations.
orc2‐1
and
orc5‐1
have no effect on natural silencing yet cause derepression at truncated ends. X‐ACS silencing requires the proximity of the telomere and is dependent on
SIR2
,
SIR3
,
SIR4
and
HDF1
. The structures found at native yeast telomeres appear to limit the potential of repressive chromatin.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10228167</pmid><doi>10.1093/emboj/18.9.2538</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 1999-05, Vol.18 (9), p.2538-2550 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171335 |
source | PubMed Central |
subjects | Base Sequence Binding Sites - genetics chromatin Chromatin - metabolism Consensus Sequence DNA-binding proteins DNA-Binding Proteins - metabolism Fungal Proteins - genetics gene expression Gene Expression Regulation, Fungal genetic regulation Models, Genetic Molecular Sequence Data Mutation native telomeres Origin Recognition Complex Protein Binding proto-silencers Recombination, Genetic Repetitive Sequences, Nucleic Acid reporter genes Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins silencing subtelomeric core x element subtelomeric y' element Telomere telomeres Trans-Activators - metabolism Transcription Factors - metabolism ura3 gene X elements Yeasts Y′ elements |
title | Limitations of silencing at native yeast telomeres |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20silencing%20at%20native%20yeast%20telomeres&rft.jtitle=The%20EMBO%20journal&rft.au=Pryde,%20F.E&rft.date=1999-05-04&rft.volume=18&rft.issue=9&rft.spage=2538&rft.epage=2550&rft.pages=2538-2550&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.9.2538&rft_dat=%3Cproquest_pubme%3E69730653%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6877-4f0c161764388310ecb96471254ebf2bd009ccaeabd77683daf1f9d2ad898bb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195261505&rft_id=info:pmid/10228167&rfr_iscdi=true |