Loading…

HIV-1 Tat transcriptional activity is regulated by acetylation

The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans ‐activation responsive region (TAR). We and others have shown that trans ‐activator protein (Tat)‐associated histone acetylt...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 1999-11, Vol.18 (21), p.6106-6118
Main Authors: Kiernan, Rosemary E., Vanhulle, Caroline, Schiltz, Lou, Adam, Emmanuelle, Xiao, Hua, Maudoux, Frédéric, Calomme, Claire, Burny, Arsène, Nakatani, Yoshihiro, Jeang, Kuan-Teh, Benkirane, Monsef, Van Lint, Carine
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6683-897dfb0202f8f21fc8d3e9b190ef8dacca87489a9115c8afa821615589d25a1b3
cites
container_end_page 6118
container_issue 21
container_start_page 6106
container_title The EMBO journal
container_volume 18
creator Kiernan, Rosemary E.
Vanhulle, Caroline
Schiltz, Lou
Adam, Emmanuelle
Xiao, Hua
Maudoux, Frédéric
Calomme, Claire
Burny, Arsène
Nakatani, Yoshihiro
Jeang, Kuan-Teh
Benkirane, Monsef
Van Lint, Carine
description The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans ‐activation responsive region (TAR). We and others have shown that trans ‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo , histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.
doi_str_mv 10.1093/emboj/18.21.6106
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>372976691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6683-897dfb0202f8f21fc8d3e9b190ef8dacca87489a9115c8afa821615589d25a1b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUha0KRIfCng0oYsEuU19n_NpUgqqvUYFFHyA2luM4g4dMMthO2_x7XFINAxLqyrLOd46P70XoFeApYFns21XZLfdBTAlMGWC2gyYwYzgnmNMnaIIJg3wGQu6i5yEsMcZUcHiGdgHTGQUCE3RwenadQ3apYxa9boPxbh1d1-om0ya6GxeHzIXM20Xf6GirrBySYOOQbgl7gZ7Wugn25cO5h66Ojy4PT_Pzzydnh-_Pc8OYKHIheVWXmGBSi5pAbURVWFmCxLYWlTZGCz4TUksAaoSutSDAgFIhK0I1lMUeOhhz1325spWxbWrbqLV3K-0H1Wmn_lZa910tuhsFwIFxmgLePQT47mdvQ1QrF4xtGt3arg-KSUI4AfIoCLwQQkiWwLf_gMuu92lwiZE0TV4SmSA8QsZ3IXhbbyoDVvcrVL9XqEAoAup-hcnyZvurW4ZxZwmQI3DrGjs8GqiOPn6YcyoJhiJ5YfSGZGsX1m-V_n-h16On1bH3dvPgn8x81F2I9m4ja_9DMV5wqr58OlHzC_kVfzumal78As3o0to</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195261929</pqid></control><display><type>article</type><title>HIV-1 Tat transcriptional activity is regulated by acetylation</title><source>PubMed (Medline)</source><creator>Kiernan, Rosemary E. ; Vanhulle, Caroline ; Schiltz, Lou ; Adam, Emmanuelle ; Xiao, Hua ; Maudoux, Frédéric ; Calomme, Claire ; Burny, Arsène ; Nakatani, Yoshihiro ; Jeang, Kuan-Teh ; Benkirane, Monsef ; Van Lint, Carine</creator><creatorcontrib>Kiernan, Rosemary E. ; Vanhulle, Caroline ; Schiltz, Lou ; Adam, Emmanuelle ; Xiao, Hua ; Maudoux, Frédéric ; Calomme, Claire ; Burny, Arsène ; Nakatani, Yoshihiro ; Jeang, Kuan-Teh ; Benkirane, Monsef ; Van Lint, Carine</creatorcontrib><description>The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans ‐activation responsive region (TAR). We and others have shown that trans ‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo , histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.21.6106</identifier><identifier>PMID: 10545121</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>3T3 Cells ; Acetylation ; Acetyltransferases - metabolism ; AIDS/HIV ; Animals ; Cell Cycle Proteins - metabolism ; Cyclin T ; Cyclins - metabolism ; Gene Expression Regulation, Viral - genetics ; Gene Products, tat - genetics ; Gene Products, tat - metabolism ; Histone Acetyltransferases ; HIV Long Terminal Repeat - genetics ; HIV-1 - genetics ; HIV-1 Tat ; Human immunodeficiency virus 1 ; Humans ; Mice ; Mutation ; p300 ; p300-CBP Transcription Factors ; p300/CBP-associated factor ; p300/CBP-associating factor ; PCAF ; Positive Transcriptional Elongation Factor B ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases - metabolism ; RNA, Viral - metabolism ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae Proteins ; Synergism ; tat Gene Products, Human Immunodeficiency Virus ; Transcription Factors ; Transcription, Genetic ; transcriptional activity ; trichostatin A ; Viral Proteins - metabolism</subject><ispartof>The EMBO journal, 1999-11, Vol.18 (21), p.6106-6118</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 01, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6683-897dfb0202f8f21fc8d3e9b190ef8dacca87489a9115c8afa821615589d25a1b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171675/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171675/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10545121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiernan, Rosemary E.</creatorcontrib><creatorcontrib>Vanhulle, Caroline</creatorcontrib><creatorcontrib>Schiltz, Lou</creatorcontrib><creatorcontrib>Adam, Emmanuelle</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Maudoux, Frédéric</creatorcontrib><creatorcontrib>Calomme, Claire</creatorcontrib><creatorcontrib>Burny, Arsène</creatorcontrib><creatorcontrib>Nakatani, Yoshihiro</creatorcontrib><creatorcontrib>Jeang, Kuan-Teh</creatorcontrib><creatorcontrib>Benkirane, Monsef</creatorcontrib><creatorcontrib>Van Lint, Carine</creatorcontrib><title>HIV-1 Tat transcriptional activity is regulated by acetylation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans ‐activation responsive region (TAR). We and others have shown that trans ‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo , histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.</description><subject>3T3 Cells</subject><subject>Acetylation</subject><subject>Acetyltransferases - metabolism</subject><subject>AIDS/HIV</subject><subject>Animals</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cyclin T</subject><subject>Cyclins - metabolism</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Gene Products, tat - genetics</subject><subject>Gene Products, tat - metabolism</subject><subject>Histone Acetyltransferases</subject><subject>HIV Long Terminal Repeat - genetics</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 Tat</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Mice</subject><subject>Mutation</subject><subject>p300</subject><subject>p300-CBP Transcription Factors</subject><subject>p300/CBP-associated factor</subject><subject>p300/CBP-associating factor</subject><subject>PCAF</subject><subject>Positive Transcriptional Elongation Factor B</subject><subject>Promoter Regions, Genetic</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>RNA, Viral - metabolism</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Synergism</subject><subject>tat Gene Products, Human Immunodeficiency Virus</subject><subject>Transcription Factors</subject><subject>Transcription, Genetic</subject><subject>transcriptional activity</subject><subject>trichostatin A</subject><subject>Viral Proteins - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUha0KRIfCng0oYsEuU19n_NpUgqqvUYFFHyA2luM4g4dMMthO2_x7XFINAxLqyrLOd46P70XoFeApYFns21XZLfdBTAlMGWC2gyYwYzgnmNMnaIIJg3wGQu6i5yEsMcZUcHiGdgHTGQUCE3RwenadQ3apYxa9boPxbh1d1-om0ya6GxeHzIXM20Xf6GirrBySYOOQbgl7gZ7Wugn25cO5h66Ojy4PT_Pzzydnh-_Pc8OYKHIheVWXmGBSi5pAbURVWFmCxLYWlTZGCz4TUksAaoSutSDAgFIhK0I1lMUeOhhz1325spWxbWrbqLV3K-0H1Wmn_lZa910tuhsFwIFxmgLePQT47mdvQ1QrF4xtGt3arg-KSUI4AfIoCLwQQkiWwLf_gMuu92lwiZE0TV4SmSA8QsZ3IXhbbyoDVvcrVL9XqEAoAup-hcnyZvurW4ZxZwmQI3DrGjs8GqiOPn6YcyoJhiJ5YfSGZGsX1m-V_n-h16On1bH3dvPgn8x81F2I9m4ja_9DMV5wqr58OlHzC_kVfzumal78As3o0to</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Kiernan, Rosemary E.</creator><creator>Vanhulle, Caroline</creator><creator>Schiltz, Lou</creator><creator>Adam, Emmanuelle</creator><creator>Xiao, Hua</creator><creator>Maudoux, Frédéric</creator><creator>Calomme, Claire</creator><creator>Burny, Arsène</creator><creator>Nakatani, Yoshihiro</creator><creator>Jeang, Kuan-Teh</creator><creator>Benkirane, Monsef</creator><creator>Van Lint, Carine</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991101</creationdate><title>HIV-1 Tat transcriptional activity is regulated by acetylation</title><author>Kiernan, Rosemary E. ; Vanhulle, Caroline ; Schiltz, Lou ; Adam, Emmanuelle ; Xiao, Hua ; Maudoux, Frédéric ; Calomme, Claire ; Burny, Arsène ; Nakatani, Yoshihiro ; Jeang, Kuan-Teh ; Benkirane, Monsef ; Van Lint, Carine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6683-897dfb0202f8f21fc8d3e9b190ef8dacca87489a9115c8afa821615589d25a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>3T3 Cells</topic><topic>Acetylation</topic><topic>Acetyltransferases - metabolism</topic><topic>AIDS/HIV</topic><topic>Animals</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cyclin T</topic><topic>Cyclins - metabolism</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Gene Products, tat - genetics</topic><topic>Gene Products, tat - metabolism</topic><topic>Histone Acetyltransferases</topic><topic>HIV Long Terminal Repeat - genetics</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 Tat</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Mice</topic><topic>Mutation</topic><topic>p300</topic><topic>p300-CBP Transcription Factors</topic><topic>p300/CBP-associated factor</topic><topic>p300/CBP-associating factor</topic><topic>PCAF</topic><topic>Positive Transcriptional Elongation Factor B</topic><topic>Promoter Regions, Genetic</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>RNA, Viral - metabolism</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Synergism</topic><topic>tat Gene Products, Human Immunodeficiency Virus</topic><topic>Transcription Factors</topic><topic>Transcription, Genetic</topic><topic>transcriptional activity</topic><topic>trichostatin A</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiernan, Rosemary E.</creatorcontrib><creatorcontrib>Vanhulle, Caroline</creatorcontrib><creatorcontrib>Schiltz, Lou</creatorcontrib><creatorcontrib>Adam, Emmanuelle</creatorcontrib><creatorcontrib>Xiao, Hua</creatorcontrib><creatorcontrib>Maudoux, Frédéric</creatorcontrib><creatorcontrib>Calomme, Claire</creatorcontrib><creatorcontrib>Burny, Arsène</creatorcontrib><creatorcontrib>Nakatani, Yoshihiro</creatorcontrib><creatorcontrib>Jeang, Kuan-Teh</creatorcontrib><creatorcontrib>Benkirane, Monsef</creatorcontrib><creatorcontrib>Van Lint, Carine</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiernan, Rosemary E.</au><au>Vanhulle, Caroline</au><au>Schiltz, Lou</au><au>Adam, Emmanuelle</au><au>Xiao, Hua</au><au>Maudoux, Frédéric</au><au>Calomme, Claire</au><au>Burny, Arsène</au><au>Nakatani, Yoshihiro</au><au>Jeang, Kuan-Teh</au><au>Benkirane, Monsef</au><au>Van Lint, Carine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIV-1 Tat transcriptional activity is regulated by acetylation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>18</volume><issue>21</issue><spage>6106</spage><epage>6118</epage><pages>6106-6118</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans ‐activation responsive region (TAR). We and others have shown that trans ‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo , histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10545121</pmid><doi>10.1093/emboj/18.21.6106</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1999-11, Vol.18 (21), p.6106-6118
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171675
source PubMed (Medline)
subjects 3T3 Cells
Acetylation
Acetyltransferases - metabolism
AIDS/HIV
Animals
Cell Cycle Proteins - metabolism
Cyclin T
Cyclins - metabolism
Gene Expression Regulation, Viral - genetics
Gene Products, tat - genetics
Gene Products, tat - metabolism
Histone Acetyltransferases
HIV Long Terminal Repeat - genetics
HIV-1 - genetics
HIV-1 Tat
Human immunodeficiency virus 1
Humans
Mice
Mutation
p300
p300-CBP Transcription Factors
p300/CBP-associated factor
p300/CBP-associating factor
PCAF
Positive Transcriptional Elongation Factor B
Promoter Regions, Genetic
Protein-Serine-Threonine Kinases - metabolism
RNA, Viral - metabolism
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae Proteins
Synergism
tat Gene Products, Human Immunodeficiency Virus
Transcription Factors
Transcription, Genetic
transcriptional activity
trichostatin A
Viral Proteins - metabolism
title HIV-1 Tat transcriptional activity is regulated by acetylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIV-1%20Tat%20transcriptional%20activity%20is%20regulated%20by%20acetylation&rft.jtitle=The%20EMBO%20journal&rft.au=Kiernan,%20Rosemary%20E.&rft.date=1999-11-01&rft.volume=18&rft.issue=21&rft.spage=6106&rft.epage=6118&rft.pages=6106-6118&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.21.6106&rft_dat=%3Cproquest_pubme%3E372976691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6683-897dfb0202f8f21fc8d3e9b190ef8dacca87489a9115c8afa821615589d25a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195261929&rft_id=info:pmid/10545121&rfr_iscdi=true