Loading…

Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli

The ATP‐bound but not the ADP‐bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now ha...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 1999-12, Vol.18 (23), p.6642-6652
Main Authors: Kurokawa, Kenji, Nishida, Satoshi, Emoto, Akiko, Sekimizu, Kazuhisa, Katayama, Tsutomu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6685-c50fc568a521e892cb20505a7382242de0f6fc276f4881c808a6e448715840e53
cites
container_end_page 6652
container_issue 23
container_start_page 6642
container_title The EMBO journal
container_volume 18
creator Kurokawa, Kenji
Nishida, Satoshi
Emoto, Akiko
Sekimizu, Kazuhisa
Katayama, Tsutomu
description The ATP‐bound but not the ADP‐bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP–DnaA is repressed to only ∼20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP–DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP–DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP–DnaA from ADP–DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.
doi_str_mv 10.1093/emboj/18.23.6642
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69329449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6685-c50fc568a521e892cb20505a7382242de0f6fc276f4881c808a6e448715840e53</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIRNPCnQtoxYHbpv6294JU0lCoCkgIBDfL8c42Dhs72LuF_Pc4bBUCEqpkyZbm957feFwUTzCaYlTTU1gvwuoUqymhUyEYuVdMMBOoIkjy-8UEEYErhlV9VByntEIIcSXxw-II5wMmVE0K_xE2nbOmd8GXdms7qGwIsXHe9NCUdmn8NZShLfsllKYB7zyUfshc6F0D1SIMvinbENdpR517c1ZuYujB-TKvebJLiM4unSlt6Nyj4kFrugSPb_eT4vPr-afZm-rqw8Xb2dlVZYVQvLIctZYLZTjBoGpiFwRxxI2kihBGGkCtaC2RomVKYauQMgIYy81xxRBwelK8HH03w2INjQXfR9PpTXRrE7c6GKf_rni31NfhRmMssSQyG7y4NYjh-wCp12uXLHSd8RCGpEVNSc1YfSeIJZOIy12k5_-AqzBEn19B45oTXmNOM4RGyMaQUoR2HxkjvRu5_j1yjZUmVO9GniXPDls9EIwzzkA9Aj9cB9s7DfX83atLyWuCxC40HrUpy_JPiAeh_x_o6ajJX2iIsL_wj2c11l3q4ee-bOI3LSSVXH95f6HP5UwJ-fVSU_oLr1zjSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259153</pqid></control><display><type>article</type><title>Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli</title><source>PubMed Central</source><creator>Kurokawa, Kenji ; Nishida, Satoshi ; Emoto, Akiko ; Sekimizu, Kazuhisa ; Katayama, Tsutomu</creator><creatorcontrib>Kurokawa, Kenji ; Nishida, Satoshi ; Emoto, Akiko ; Sekimizu, Kazuhisa ; Katayama, Tsutomu</creatorcontrib><description>The ATP‐bound but not the ADP‐bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP–DnaA is repressed to only ∼20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP–DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP–DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP–DnaA from ADP–DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/18.23.6642</identifier><identifier>PMID: 10581238</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adenine - chemistry ; Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; ADP ; ATP ; Bacterial Outer Membrane Proteins ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Cell Cycle ; Dam protein ; Deoxyribonucleic acid ; DNA ; DNA polymerase ; DNA Replication ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - chemistry ; DNA-Directed DNA Polymerase ; DnaA ; DnaA protein ; Dose-Response Relationship, Drug ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Hydrolysis ; Precipitin Tests ; Protein Binding ; Protein synthesis ; Replication Origin ; SeqA protein ; sliding clamp ; Temperature ; Time Factors ; Transcription Factors</subject><ispartof>The EMBO journal, 1999-12, Vol.18 (23), p.6642-6652</ispartof><rights>European Molecular Biology Organization 1999</rights><rights>Copyright © 1999 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Dec 01, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6685-c50fc568a521e892cb20505a7382242de0f6fc276f4881c808a6e448715840e53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171727/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171727/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10581238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Nishida, Satoshi</creatorcontrib><creatorcontrib>Emoto, Akiko</creatorcontrib><creatorcontrib>Sekimizu, Kazuhisa</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><title>Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The ATP‐bound but not the ADP‐bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP–DnaA is repressed to only ∼20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP–DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP–DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP–DnaA from ADP–DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.</description><subject>Adenine - chemistry</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ADP</subject><subject>ATP</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Cycle</subject><subject>Dam protein</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Directed DNA Polymerase</subject><subject>DnaA</subject><subject>DnaA protein</subject><subject>Dose-Response Relationship, Drug</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Hydrolysis</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Protein synthesis</subject><subject>Replication Origin</subject><subject>SeqA protein</subject><subject>sliding clamp</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Transcription Factors</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFks1vEzEQxVcIRNPCnQtoxYHbpv6294JU0lCoCkgIBDfL8c42Dhs72LuF_Pc4bBUCEqpkyZbm957feFwUTzCaYlTTU1gvwuoUqymhUyEYuVdMMBOoIkjy-8UEEYErhlV9VByntEIIcSXxw-II5wMmVE0K_xE2nbOmd8GXdms7qGwIsXHe9NCUdmn8NZShLfsllKYB7zyUfshc6F0D1SIMvinbENdpR517c1ZuYujB-TKvebJLiM4unSlt6Nyj4kFrugSPb_eT4vPr-afZm-rqw8Xb2dlVZYVQvLIctZYLZTjBoGpiFwRxxI2kihBGGkCtaC2RomVKYauQMgIYy81xxRBwelK8HH03w2INjQXfR9PpTXRrE7c6GKf_rni31NfhRmMssSQyG7y4NYjh-wCp12uXLHSd8RCGpEVNSc1YfSeIJZOIy12k5_-AqzBEn19B45oTXmNOM4RGyMaQUoR2HxkjvRu5_j1yjZUmVO9GniXPDls9EIwzzkA9Aj9cB9s7DfX83atLyWuCxC40HrUpy_JPiAeh_x_o6ajJX2iIsL_wj2c11l3q4ee-bOI3LSSVXH95f6HP5UwJ-fVSU_oLr1zjSQ</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Kurokawa, Kenji</creator><creator>Nishida, Satoshi</creator><creator>Emoto, Akiko</creator><creator>Sekimizu, Kazuhisa</creator><creator>Katayama, Tsutomu</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991201</creationdate><title>Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli</title><author>Kurokawa, Kenji ; Nishida, Satoshi ; Emoto, Akiko ; Sekimizu, Kazuhisa ; Katayama, Tsutomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6685-c50fc568a521e892cb20505a7382242de0f6fc276f4881c808a6e448715840e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adenine - chemistry</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ADP</topic><topic>ATP</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Cycle</topic><topic>Dam protein</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Directed DNA Polymerase</topic><topic>DnaA</topic><topic>DnaA protein</topic><topic>Dose-Response Relationship, Drug</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Hydrolysis</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Protein synthesis</topic><topic>Replication Origin</topic><topic>SeqA protein</topic><topic>sliding clamp</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Nishida, Satoshi</creatorcontrib><creatorcontrib>Emoto, Akiko</creatorcontrib><creatorcontrib>Sekimizu, Kazuhisa</creatorcontrib><creatorcontrib>Katayama, Tsutomu</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurokawa, Kenji</au><au>Nishida, Satoshi</au><au>Emoto, Akiko</au><au>Sekimizu, Kazuhisa</au><au>Katayama, Tsutomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>18</volume><issue>23</issue><spage>6642</spage><epage>6652</epage><pages>6642-6652</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The ATP‐bound but not the ADP‐bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP–DnaA is repressed to only ∼20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP–DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP–DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP–DnaA from ADP–DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10581238</pmid><doi>10.1093/emboj/18.23.6642</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1999-12, Vol.18 (23), p.6642-6652
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1171727
source PubMed Central
subjects Adenine - chemistry
Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - metabolism
ADP
ATP
Bacterial Outer Membrane Proteins
Bacterial Proteins - biosynthesis
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Cell Cycle
Dam protein
Deoxyribonucleic acid
DNA
DNA polymerase
DNA Replication
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - chemistry
DNA-Directed DNA Polymerase
DnaA
DnaA protein
Dose-Response Relationship, Drug
E coli
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - metabolism
Escherichia coli Proteins
Hydrolysis
Precipitin Tests
Protein Binding
Protein synthesis
Replication Origin
SeqA protein
sliding clamp
Temperature
Time Factors
Transcription Factors
title Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Replication%20cycle-coordinated%20change%20of%20the%20adenine%20nucleotide-bound%20forms%20of%20DnaA%20protein%20in%20Escherichia%20coli&rft.jtitle=The%20EMBO%20journal&rft.au=Kurokawa,%20Kenji&rft.date=1999-12-01&rft.volume=18&rft.issue=23&rft.spage=6642&rft.epage=6652&rft.pages=6642-6652&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/18.23.6642&rft_dat=%3Cproquest_pubme%3E69329449%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6685-c50fc568a521e892cb20505a7382242de0f6fc276f4881c808a6e448715840e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195259153&rft_id=info:pmid/10581238&rfr_iscdi=true