Loading…
Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors
Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functio...
Saved in:
Published in: | Advanced healthcare materials 2025-01, Vol.14 (2), p.e2403111-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | e2403111 |
container_title | Advanced healthcare materials |
container_volume | 14 |
creator | Hirschwald, Lukas T. Hagemann, Franziska Biermann, Maik Hanßen, Paul Hoffmann, Patrick Höhs, Tim Neuhaus, Florian Tillmann, Maerthe Theresa Peric, Petar Wattenberg, Maximilian Stille, Maik Fechter, Tamara Theißen, Alexander Winnersbach, Patrick Barbian, Kai P. Jansen, Sebastian V. Steinseifer, Ulrich Wiegmann, Bettina Rossaint, Rolf Wessling, Matthias Bleilevens, Christian Linkhorst, John |
description | Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.
Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation. |
doi_str_mv | 10.1002/adhm.202403111 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155027271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH-u1ycU0o8gtaKCcLa83tnE1a4d7N2i_HscJaSll_piS_P40cy8RfGe4CnBmH42zbqfUkw5ZoSQV8UpJYpOaCnU6-Ob45PiPKV7nE8pSFmRt8UJU4JzwuRpsbr0a-MtNGgBfWi23vTOJhRaNPMuhR6G6Cxa3t3-RMuwCV1YbdEPaEYL6GsXQoPmXRgG51fIecQu0F10fsi2QzH4wdghxPSueNOaLsH54T4rfl1dLueLyc3362_z2c3EMsHJpBWmlVwaTilTrCxJC5yoqpYcrGQ1rjmpq0oIYLK0FLgAaFTdStEYpcqWsrPiy967GeseGgt-iKbTm-h6E7c6GKf_r3i31qvwoAmRDAtMsuHTwRDD7xHSoHuXLHSd8RDGpBmhVUV5XntGPz5D78MYfZ4vU0JgKqncCad7ysaQUoT22A3Bepej3uWojznmDx-eznDE_6WWAbUH_rgOti_o9Oxicfso_wvfTqkt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155027271</pqid></control><display><type>article</type><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</creator><creatorcontrib>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</creatorcontrib><description>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.
Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202403111</identifier><identifier>PMID: 39544137</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial organs ; Blood coagulation ; Blood Coagulation - physiology ; Cartridges ; Clotting ; Computational fluid dynamics ; Computed tomography ; Contactors ; dialysis ; Dialyzers ; extracorporeal membrane oxygenation ; Flow distribution ; Hemodynamics ; Hemodynamics - physiology ; Humans ; Hydrodynamics ; Isometric ; Mass transfer ; Minimal surfaces ; Modules ; Printing, Three-Dimensional ; Selective adsorption ; Surface chemistry ; Topology ; topology reduced clotting ; triply periodic minimal surface</subject><ispartof>Advanced healthcare materials, 2025-01, Vol.14 (2), p.e2403111-n/a</ispartof><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</cites><orcidid>0009-0002-8594-7262 ; 0000-0001-9535-2081 ; 0009-0002-3954-960X ; 0000-0001-7587-1693 ; 0000-0002-2104-1843 ; 0000-0002-7874-5315 ; 0000-0002-7978-3647 ; 0000-0002-8556-9217 ; 0000-0002-4629-429X ; 0000-0002-3808-9958 ; 0000-0002-8065-9803 ; 0000-0003-0877-8805 ; 0000-0003-2460-2658 ; 0000-0001-6979-6818 ; 0000-0001-6556-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39544137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirschwald, Lukas T.</creatorcontrib><creatorcontrib>Hagemann, Franziska</creatorcontrib><creatorcontrib>Biermann, Maik</creatorcontrib><creatorcontrib>Hanßen, Paul</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Höhs, Tim</creatorcontrib><creatorcontrib>Neuhaus, Florian</creatorcontrib><creatorcontrib>Tillmann, Maerthe Theresa</creatorcontrib><creatorcontrib>Peric, Petar</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Stille, Maik</creatorcontrib><creatorcontrib>Fechter, Tamara</creatorcontrib><creatorcontrib>Theißen, Alexander</creatorcontrib><creatorcontrib>Winnersbach, Patrick</creatorcontrib><creatorcontrib>Barbian, Kai P.</creatorcontrib><creatorcontrib>Jansen, Sebastian V.</creatorcontrib><creatorcontrib>Steinseifer, Ulrich</creatorcontrib><creatorcontrib>Wiegmann, Bettina</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Bleilevens, Christian</creatorcontrib><creatorcontrib>Linkhorst, John</creatorcontrib><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.
Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</description><subject>Artificial organs</subject><subject>Blood coagulation</subject><subject>Blood Coagulation - physiology</subject><subject>Cartridges</subject><subject>Clotting</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Contactors</subject><subject>dialysis</subject><subject>Dialyzers</subject><subject>extracorporeal membrane oxygenation</subject><subject>Flow distribution</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Isometric</subject><subject>Mass transfer</subject><subject>Minimal surfaces</subject><subject>Modules</subject><subject>Printing, Three-Dimensional</subject><subject>Selective adsorption</subject><subject>Surface chemistry</subject><subject>Topology</subject><subject>topology reduced clotting</subject><subject>triply periodic minimal surface</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH-u1ycU0o8gtaKCcLa83tnE1a4d7N2i_HscJaSll_piS_P40cy8RfGe4CnBmH42zbqfUkw5ZoSQV8UpJYpOaCnU6-Ob45PiPKV7nE8pSFmRt8UJU4JzwuRpsbr0a-MtNGgBfWi23vTOJhRaNPMuhR6G6Cxa3t3-RMuwCV1YbdEPaEYL6GsXQoPmXRgG51fIecQu0F10fsi2QzH4wdghxPSueNOaLsH54T4rfl1dLueLyc3362_z2c3EMsHJpBWmlVwaTilTrCxJC5yoqpYcrGQ1rjmpq0oIYLK0FLgAaFTdStEYpcqWsrPiy967GeseGgt-iKbTm-h6E7c6GKf_r3i31qvwoAmRDAtMsuHTwRDD7xHSoHuXLHSd8RDGpBmhVUV5XntGPz5D78MYfZ4vU0JgKqncCad7ysaQUoT22A3Bepej3uWojznmDx-eznDE_6WWAbUH_rgOti_o9Oxicfso_wvfTqkt</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Hirschwald, Lukas T.</creator><creator>Hagemann, Franziska</creator><creator>Biermann, Maik</creator><creator>Hanßen, Paul</creator><creator>Hoffmann, Patrick</creator><creator>Höhs, Tim</creator><creator>Neuhaus, Florian</creator><creator>Tillmann, Maerthe Theresa</creator><creator>Peric, Petar</creator><creator>Wattenberg, Maximilian</creator><creator>Stille, Maik</creator><creator>Fechter, Tamara</creator><creator>Theißen, Alexander</creator><creator>Winnersbach, Patrick</creator><creator>Barbian, Kai P.</creator><creator>Jansen, Sebastian V.</creator><creator>Steinseifer, Ulrich</creator><creator>Wiegmann, Bettina</creator><creator>Rossaint, Rolf</creator><creator>Wessling, Matthias</creator><creator>Bleilevens, Christian</creator><creator>Linkhorst, John</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0002-8594-7262</orcidid><orcidid>https://orcid.org/0000-0001-9535-2081</orcidid><orcidid>https://orcid.org/0009-0002-3954-960X</orcidid><orcidid>https://orcid.org/0000-0001-7587-1693</orcidid><orcidid>https://orcid.org/0000-0002-2104-1843</orcidid><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0002-7978-3647</orcidid><orcidid>https://orcid.org/0000-0002-8556-9217</orcidid><orcidid>https://orcid.org/0000-0002-4629-429X</orcidid><orcidid>https://orcid.org/0000-0002-3808-9958</orcidid><orcidid>https://orcid.org/0000-0002-8065-9803</orcidid><orcidid>https://orcid.org/0000-0003-0877-8805</orcidid><orcidid>https://orcid.org/0000-0003-2460-2658</orcidid><orcidid>https://orcid.org/0000-0001-6979-6818</orcidid><orcidid>https://orcid.org/0000-0001-6556-4059</orcidid></search><sort><creationdate>202501</creationdate><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><author>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial organs</topic><topic>Blood coagulation</topic><topic>Blood Coagulation - physiology</topic><topic>Cartridges</topic><topic>Clotting</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Contactors</topic><topic>dialysis</topic><topic>Dialyzers</topic><topic>extracorporeal membrane oxygenation</topic><topic>Flow distribution</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Isometric</topic><topic>Mass transfer</topic><topic>Minimal surfaces</topic><topic>Modules</topic><topic>Printing, Three-Dimensional</topic><topic>Selective adsorption</topic><topic>Surface chemistry</topic><topic>Topology</topic><topic>topology reduced clotting</topic><topic>triply periodic minimal surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschwald, Lukas T.</creatorcontrib><creatorcontrib>Hagemann, Franziska</creatorcontrib><creatorcontrib>Biermann, Maik</creatorcontrib><creatorcontrib>Hanßen, Paul</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Höhs, Tim</creatorcontrib><creatorcontrib>Neuhaus, Florian</creatorcontrib><creatorcontrib>Tillmann, Maerthe Theresa</creatorcontrib><creatorcontrib>Peric, Petar</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Stille, Maik</creatorcontrib><creatorcontrib>Fechter, Tamara</creatorcontrib><creatorcontrib>Theißen, Alexander</creatorcontrib><creatorcontrib>Winnersbach, Patrick</creatorcontrib><creatorcontrib>Barbian, Kai P.</creatorcontrib><creatorcontrib>Jansen, Sebastian V.</creatorcontrib><creatorcontrib>Steinseifer, Ulrich</creatorcontrib><creatorcontrib>Wiegmann, Bettina</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Bleilevens, Christian</creatorcontrib><creatorcontrib>Linkhorst, John</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschwald, Lukas T.</au><au>Hagemann, Franziska</au><au>Biermann, Maik</au><au>Hanßen, Paul</au><au>Hoffmann, Patrick</au><au>Höhs, Tim</au><au>Neuhaus, Florian</au><au>Tillmann, Maerthe Theresa</au><au>Peric, Petar</au><au>Wattenberg, Maximilian</au><au>Stille, Maik</au><au>Fechter, Tamara</au><au>Theißen, Alexander</au><au>Winnersbach, Patrick</au><au>Barbian, Kai P.</au><au>Jansen, Sebastian V.</au><au>Steinseifer, Ulrich</au><au>Wiegmann, Bettina</au><au>Rossaint, Rolf</au><au>Wessling, Matthias</au><au>Bleilevens, Christian</au><au>Linkhorst, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2025-01</date><risdate>2025</risdate><volume>14</volume><issue>2</issue><spage>e2403111</spage><epage>n/a</epage><pages>e2403111-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer.
Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39544137</pmid><doi>10.1002/adhm.202403111</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0002-8594-7262</orcidid><orcidid>https://orcid.org/0000-0001-9535-2081</orcidid><orcidid>https://orcid.org/0009-0002-3954-960X</orcidid><orcidid>https://orcid.org/0000-0001-7587-1693</orcidid><orcidid>https://orcid.org/0000-0002-2104-1843</orcidid><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0002-7978-3647</orcidid><orcidid>https://orcid.org/0000-0002-8556-9217</orcidid><orcidid>https://orcid.org/0000-0002-4629-429X</orcidid><orcidid>https://orcid.org/0000-0002-3808-9958</orcidid><orcidid>https://orcid.org/0000-0002-8065-9803</orcidid><orcidid>https://orcid.org/0000-0003-0877-8805</orcidid><orcidid>https://orcid.org/0000-0003-2460-2658</orcidid><orcidid>https://orcid.org/0000-0001-6979-6818</orcidid><orcidid>https://orcid.org/0000-0001-6556-4059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2025-01, Vol.14 (2), p.e2403111-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730501 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Artificial organs Blood coagulation Blood Coagulation - physiology Cartridges Clotting Computational fluid dynamics Computed tomography Contactors dialysis Dialyzers extracorporeal membrane oxygenation Flow distribution Hemodynamics Hemodynamics - physiology Humans Hydrodynamics Isometric Mass transfer Minimal surfaces Modules Printing, Three-Dimensional Selective adsorption Surface chemistry Topology topology reduced clotting triply periodic minimal surface |
title | Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Hemodynamics%20of%20Anisometric%20TPMS%20Topology%20Reduce%20Blood%20Clotting%20in%203D%20Printed%20Blood%20Contactors&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Hirschwald,%20Lukas%20T.&rft.date=2025-01&rft.volume=14&rft.issue=2&rft.spage=e2403111&rft.epage=n/a&rft.pages=e2403111-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202403111&rft_dat=%3Cproquest_pubme%3E3155027271%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3155027271&rft_id=info:pmid/39544137&rfr_iscdi=true |