Loading…

Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors

Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functio...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2025-01, Vol.14 (2), p.e2403111-n/a
Main Authors: Hirschwald, Lukas T., Hagemann, Franziska, Biermann, Maik, Hanßen, Paul, Hoffmann, Patrick, Höhs, Tim, Neuhaus, Florian, Tillmann, Maerthe Theresa, Peric, Petar, Wattenberg, Maximilian, Stille, Maik, Fechter, Tamara, Theißen, Alexander, Winnersbach, Patrick, Barbian, Kai P., Jansen, Sebastian V., Steinseifer, Ulrich, Wiegmann, Bettina, Rossaint, Rolf, Wessling, Matthias, Bleilevens, Christian, Linkhorst, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23
container_end_page n/a
container_issue 2
container_start_page e2403111
container_title Advanced healthcare materials
container_volume 14
creator Hirschwald, Lukas T.
Hagemann, Franziska
Biermann, Maik
Hanßen, Paul
Hoffmann, Patrick
Höhs, Tim
Neuhaus, Florian
Tillmann, Maerthe Theresa
Peric, Petar
Wattenberg, Maximilian
Stille, Maik
Fechter, Tamara
Theißen, Alexander
Winnersbach, Patrick
Barbian, Kai P.
Jansen, Sebastian V.
Steinseifer, Ulrich
Wiegmann, Bettina
Rossaint, Rolf
Wessling, Matthias
Bleilevens, Christian
Linkhorst, John
description Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer. Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.
doi_str_mv 10.1002/adhm.202403111
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155027271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH-u1ycU0o8gtaKCcLa83tnE1a4d7N2i_HscJaSll_piS_P40cy8RfGe4CnBmH42zbqfUkw5ZoSQV8UpJYpOaCnU6-Ob45PiPKV7nE8pSFmRt8UJU4JzwuRpsbr0a-MtNGgBfWi23vTOJhRaNPMuhR6G6Cxa3t3-RMuwCV1YbdEPaEYL6GsXQoPmXRgG51fIecQu0F10fsi2QzH4wdghxPSueNOaLsH54T4rfl1dLueLyc3362_z2c3EMsHJpBWmlVwaTilTrCxJC5yoqpYcrGQ1rjmpq0oIYLK0FLgAaFTdStEYpcqWsrPiy967GeseGgt-iKbTm-h6E7c6GKf_r3i31qvwoAmRDAtMsuHTwRDD7xHSoHuXLHSd8RDGpBmhVUV5XntGPz5D78MYfZ4vU0JgKqncCad7ysaQUoT22A3Bepej3uWojznmDx-eznDE_6WWAbUH_rgOti_o9Oxicfso_wvfTqkt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155027271</pqid></control><display><type>article</type><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</creator><creatorcontrib>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</creatorcontrib><description>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer. Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202403111</identifier><identifier>PMID: 39544137</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial organs ; Blood coagulation ; Blood Coagulation - physiology ; Cartridges ; Clotting ; Computational fluid dynamics ; Computed tomography ; Contactors ; dialysis ; Dialyzers ; extracorporeal membrane oxygenation ; Flow distribution ; Hemodynamics ; Hemodynamics - physiology ; Humans ; Hydrodynamics ; Isometric ; Mass transfer ; Minimal surfaces ; Modules ; Printing, Three-Dimensional ; Selective adsorption ; Surface chemistry ; Topology ; topology reduced clotting ; triply periodic minimal surface</subject><ispartof>Advanced healthcare materials, 2025-01, Vol.14 (2), p.e2403111-n/a</ispartof><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</cites><orcidid>0009-0002-8594-7262 ; 0000-0001-9535-2081 ; 0009-0002-3954-960X ; 0000-0001-7587-1693 ; 0000-0002-2104-1843 ; 0000-0002-7874-5315 ; 0000-0002-7978-3647 ; 0000-0002-8556-9217 ; 0000-0002-4629-429X ; 0000-0002-3808-9958 ; 0000-0002-8065-9803 ; 0000-0003-0877-8805 ; 0000-0003-2460-2658 ; 0000-0001-6979-6818 ; 0000-0001-6556-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39544137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirschwald, Lukas T.</creatorcontrib><creatorcontrib>Hagemann, Franziska</creatorcontrib><creatorcontrib>Biermann, Maik</creatorcontrib><creatorcontrib>Hanßen, Paul</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Höhs, Tim</creatorcontrib><creatorcontrib>Neuhaus, Florian</creatorcontrib><creatorcontrib>Tillmann, Maerthe Theresa</creatorcontrib><creatorcontrib>Peric, Petar</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Stille, Maik</creatorcontrib><creatorcontrib>Fechter, Tamara</creatorcontrib><creatorcontrib>Theißen, Alexander</creatorcontrib><creatorcontrib>Winnersbach, Patrick</creatorcontrib><creatorcontrib>Barbian, Kai P.</creatorcontrib><creatorcontrib>Jansen, Sebastian V.</creatorcontrib><creatorcontrib>Steinseifer, Ulrich</creatorcontrib><creatorcontrib>Wiegmann, Bettina</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Bleilevens, Christian</creatorcontrib><creatorcontrib>Linkhorst, John</creatorcontrib><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer. Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</description><subject>Artificial organs</subject><subject>Blood coagulation</subject><subject>Blood Coagulation - physiology</subject><subject>Cartridges</subject><subject>Clotting</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Contactors</subject><subject>dialysis</subject><subject>Dialyzers</subject><subject>extracorporeal membrane oxygenation</subject><subject>Flow distribution</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Isometric</subject><subject>Mass transfer</subject><subject>Minimal surfaces</subject><subject>Modules</subject><subject>Printing, Three-Dimensional</subject><subject>Selective adsorption</subject><subject>Surface chemistry</subject><subject>Topology</subject><subject>topology reduced clotting</subject><subject>triply periodic minimal surface</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH-u1ycU0o8gtaKCcLa83tnE1a4d7N2i_HscJaSll_piS_P40cy8RfGe4CnBmH42zbqfUkw5ZoSQV8UpJYpOaCnU6-Ob45PiPKV7nE8pSFmRt8UJU4JzwuRpsbr0a-MtNGgBfWi23vTOJhRaNPMuhR6G6Cxa3t3-RMuwCV1YbdEPaEYL6GsXQoPmXRgG51fIecQu0F10fsi2QzH4wdghxPSueNOaLsH54T4rfl1dLueLyc3362_z2c3EMsHJpBWmlVwaTilTrCxJC5yoqpYcrGQ1rjmpq0oIYLK0FLgAaFTdStEYpcqWsrPiy967GeseGgt-iKbTm-h6E7c6GKf_r3i31qvwoAmRDAtMsuHTwRDD7xHSoHuXLHSd8RDGpBmhVUV5XntGPz5D78MYfZ4vU0JgKqncCad7ysaQUoT22A3Bepej3uWojznmDx-eznDE_6WWAbUH_rgOti_o9Oxicfso_wvfTqkt</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Hirschwald, Lukas T.</creator><creator>Hagemann, Franziska</creator><creator>Biermann, Maik</creator><creator>Hanßen, Paul</creator><creator>Hoffmann, Patrick</creator><creator>Höhs, Tim</creator><creator>Neuhaus, Florian</creator><creator>Tillmann, Maerthe Theresa</creator><creator>Peric, Petar</creator><creator>Wattenberg, Maximilian</creator><creator>Stille, Maik</creator><creator>Fechter, Tamara</creator><creator>Theißen, Alexander</creator><creator>Winnersbach, Patrick</creator><creator>Barbian, Kai P.</creator><creator>Jansen, Sebastian V.</creator><creator>Steinseifer, Ulrich</creator><creator>Wiegmann, Bettina</creator><creator>Rossaint, Rolf</creator><creator>Wessling, Matthias</creator><creator>Bleilevens, Christian</creator><creator>Linkhorst, John</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0002-8594-7262</orcidid><orcidid>https://orcid.org/0000-0001-9535-2081</orcidid><orcidid>https://orcid.org/0009-0002-3954-960X</orcidid><orcidid>https://orcid.org/0000-0001-7587-1693</orcidid><orcidid>https://orcid.org/0000-0002-2104-1843</orcidid><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0002-7978-3647</orcidid><orcidid>https://orcid.org/0000-0002-8556-9217</orcidid><orcidid>https://orcid.org/0000-0002-4629-429X</orcidid><orcidid>https://orcid.org/0000-0002-3808-9958</orcidid><orcidid>https://orcid.org/0000-0002-8065-9803</orcidid><orcidid>https://orcid.org/0000-0003-0877-8805</orcidid><orcidid>https://orcid.org/0000-0003-2460-2658</orcidid><orcidid>https://orcid.org/0000-0001-6979-6818</orcidid><orcidid>https://orcid.org/0000-0001-6556-4059</orcidid></search><sort><creationdate>202501</creationdate><title>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</title><author>Hirschwald, Lukas T. ; Hagemann, Franziska ; Biermann, Maik ; Hanßen, Paul ; Hoffmann, Patrick ; Höhs, Tim ; Neuhaus, Florian ; Tillmann, Maerthe Theresa ; Peric, Petar ; Wattenberg, Maximilian ; Stille, Maik ; Fechter, Tamara ; Theißen, Alexander ; Winnersbach, Patrick ; Barbian, Kai P. ; Jansen, Sebastian V. ; Steinseifer, Ulrich ; Wiegmann, Bettina ; Rossaint, Rolf ; Wessling, Matthias ; Bleilevens, Christian ; Linkhorst, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial organs</topic><topic>Blood coagulation</topic><topic>Blood Coagulation - physiology</topic><topic>Cartridges</topic><topic>Clotting</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Contactors</topic><topic>dialysis</topic><topic>Dialyzers</topic><topic>extracorporeal membrane oxygenation</topic><topic>Flow distribution</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Isometric</topic><topic>Mass transfer</topic><topic>Minimal surfaces</topic><topic>Modules</topic><topic>Printing, Three-Dimensional</topic><topic>Selective adsorption</topic><topic>Surface chemistry</topic><topic>Topology</topic><topic>topology reduced clotting</topic><topic>triply periodic minimal surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirschwald, Lukas T.</creatorcontrib><creatorcontrib>Hagemann, Franziska</creatorcontrib><creatorcontrib>Biermann, Maik</creatorcontrib><creatorcontrib>Hanßen, Paul</creatorcontrib><creatorcontrib>Hoffmann, Patrick</creatorcontrib><creatorcontrib>Höhs, Tim</creatorcontrib><creatorcontrib>Neuhaus, Florian</creatorcontrib><creatorcontrib>Tillmann, Maerthe Theresa</creatorcontrib><creatorcontrib>Peric, Petar</creatorcontrib><creatorcontrib>Wattenberg, Maximilian</creatorcontrib><creatorcontrib>Stille, Maik</creatorcontrib><creatorcontrib>Fechter, Tamara</creatorcontrib><creatorcontrib>Theißen, Alexander</creatorcontrib><creatorcontrib>Winnersbach, Patrick</creatorcontrib><creatorcontrib>Barbian, Kai P.</creatorcontrib><creatorcontrib>Jansen, Sebastian V.</creatorcontrib><creatorcontrib>Steinseifer, Ulrich</creatorcontrib><creatorcontrib>Wiegmann, Bettina</creatorcontrib><creatorcontrib>Rossaint, Rolf</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Bleilevens, Christian</creatorcontrib><creatorcontrib>Linkhorst, John</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschwald, Lukas T.</au><au>Hagemann, Franziska</au><au>Biermann, Maik</au><au>Hanßen, Paul</au><au>Hoffmann, Patrick</au><au>Höhs, Tim</au><au>Neuhaus, Florian</au><au>Tillmann, Maerthe Theresa</au><au>Peric, Petar</au><au>Wattenberg, Maximilian</au><au>Stille, Maik</au><au>Fechter, Tamara</au><au>Theißen, Alexander</au><au>Winnersbach, Patrick</au><au>Barbian, Kai P.</au><au>Jansen, Sebastian V.</au><au>Steinseifer, Ulrich</au><au>Wiegmann, Bettina</au><au>Rossaint, Rolf</au><au>Wessling, Matthias</au><au>Bleilevens, Christian</au><au>Linkhorst, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2025-01</date><risdate>2025</risdate><volume>14</volume><issue>2</issue><spage>e2403111</spage><epage>n/a</epage><pages>e2403111-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Artificial organs, such as extracorporeal membrane oxygenators, dialyzers, and hemoadsorber cartridges, face persistent challenges related to the flow distribution within the cartridge. This uneven flow distribution leads to clot formation and inefficient mass transfer over the device's functional surface. In this work, a comprehensive methodology is presented for precisely integrating triply periodic minimal surfaces (TPMS) into module housings and question whether the internal surface topology determining the flow distribution affects blood coagulation. Three module types are compared with different internal topologies: tubular, isometric, and anisometric TPMS. First, this study includes a computational fluid dynamics (CFD) simulation of the internal hemodynamics, validated through experimental residence time distributions (RTD). Blood tests using human whole blood and subsequent visualization of blood clots by computed tomography, allow the quantification of structure‐induced blood clotting. The results indicate that TPMS topologies, particularly anisometric ones, serve as effective flow distributors and significantly reduce and delay blood clotting compared to conventional tubular geometries. For these novel TPMS modules, the inner surfaces can be activated chemically or functionalized to function as a selective adsorption site or biocatalytic surface or made of a permeable material to facilitate mass transfer. Non‐ideal flow distribution in blood contactors, such as oxygenators, dialyzers, or hemoadsorbers, leads to drastic efficiency losses. An optimal flow distribution is particularly essential in the inlet and outlet areas. Distorted triply periodic minimal surface (TPMS) structures enable a smooth transition between tubing and module. The more physiological flow leads to significantly less coagulation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39544137</pmid><doi>10.1002/adhm.202403111</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0002-8594-7262</orcidid><orcidid>https://orcid.org/0000-0001-9535-2081</orcidid><orcidid>https://orcid.org/0009-0002-3954-960X</orcidid><orcidid>https://orcid.org/0000-0001-7587-1693</orcidid><orcidid>https://orcid.org/0000-0002-2104-1843</orcidid><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0002-7978-3647</orcidid><orcidid>https://orcid.org/0000-0002-8556-9217</orcidid><orcidid>https://orcid.org/0000-0002-4629-429X</orcidid><orcidid>https://orcid.org/0000-0002-3808-9958</orcidid><orcidid>https://orcid.org/0000-0002-8065-9803</orcidid><orcidid>https://orcid.org/0000-0003-0877-8805</orcidid><orcidid>https://orcid.org/0000-0003-2460-2658</orcidid><orcidid>https://orcid.org/0000-0001-6979-6818</orcidid><orcidid>https://orcid.org/0000-0001-6556-4059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2025-01, Vol.14 (2), p.e2403111-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11730501
source Wiley-Blackwell Read & Publish Collection
subjects Artificial organs
Blood coagulation
Blood Coagulation - physiology
Cartridges
Clotting
Computational fluid dynamics
Computed tomography
Contactors
dialysis
Dialyzers
extracorporeal membrane oxygenation
Flow distribution
Hemodynamics
Hemodynamics - physiology
Humans
Hydrodynamics
Isometric
Mass transfer
Minimal surfaces
Modules
Printing, Three-Dimensional
Selective adsorption
Surface chemistry
Topology
topology reduced clotting
triply periodic minimal surface
title Enhanced Hemodynamics of Anisometric TPMS Topology Reduce Blood Clotting in 3D Printed Blood Contactors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T17%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Hemodynamics%20of%20Anisometric%20TPMS%20Topology%20Reduce%20Blood%20Clotting%20in%203D%20Printed%20Blood%20Contactors&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Hirschwald,%20Lukas%20T.&rft.date=2025-01&rft.volume=14&rft.issue=2&rft.spage=e2403111&rft.epage=n/a&rft.pages=e2403111-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202403111&rft_dat=%3Cproquest_pubme%3E3155027271%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3541-f5af747a422393661fe4198b74ec73b0b41b8855e376c2e45eed9bf75da996f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3155027271&rft_id=info:pmid/39544137&rfr_iscdi=true