Loading…

Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonab...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels 2025-01, Vol.39 (2), p.1375-1383
Main Authors: M Santhosh, Neelakandan, Gupta, Suraj, Shvalya, Vasyl, Košiček, Martin, Zavašnik, Janez, Cvelbar, Uroš
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a289t-7f4b338656f86b7989565fb998c141ebbead7bf6e92fae5ee44d5cd0e145c1783
container_end_page 1383
container_issue 2
container_start_page 1375
container_title Energy & fuels
container_volume 39
creator M Santhosh, Neelakandan
Gupta, Suraj
Shvalya, Vasyl
Košiček, Martin
Zavašnik, Janez
Cvelbar, Uroš
description The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.
doi_str_mv 10.1021/acs.energyfuels.4c05182
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11748485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158101144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-7f4b338656f86b7989565fb998c141ebbead7bf6e92fae5ee44d5cd0e145c1783</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhi1UBAv0FSDHXrLYiZ3YpwotFJAQoJaeLccZ75p6bWrHW_btCdoF0RMna-R_vhnNh9AJwVOCK3KqdJqChzhfmwwuTanGjPBqB00Iq3DJcCW-oAnmvC1xU9F9dJDSI8a4qTnbQ_u14LUglE7Qz7N-pby2fl7cPa_n4IuLVXB5sMEXMzUot042Ff_ssCjOs3Ll_UIlKG6t_gOu-JWdsf1YKh_SELMecoR0hHaNcgm-bt9D9PvHxcPsqry5u7yend2UquJiKFtDu7rmDWsMb7pWcMEaZjohuCaUQNeB6tvONCAqo4ABUNoz3WMglGnS8voQfd9wn3K3hF6DH6Jy8inapYprGZSV__94u5DzsJKEtJRTzkbCty0hhr8Z0iCXNmlwTnkIOcmaME4wGQ81RttNVMeQUgTzPodg-apEjkrkByVyq2TsPP645nvfm4MxUG8Cr4THkKMfr_Yp9gWun6EI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158101144</pqid></control><display><type>article</type><title>Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>M Santhosh, Neelakandan ; Gupta, Suraj ; Shvalya, Vasyl ; Košiček, Martin ; Zavašnik, Janez ; Cvelbar, Uroš</creator><creatorcontrib>M Santhosh, Neelakandan ; Gupta, Suraj ; Shvalya, Vasyl ; Košiček, Martin ; Zavašnik, Janez ; Cvelbar, Uroš</creatorcontrib><description>The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.4c05182</identifier><identifier>PMID: 39839144</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis and Kinetics</subject><ispartof>Energy &amp; fuels, 2025-01, Vol.39 (2), p.1375-1383</ispartof><rights>2025 The Authors. Published by American Chemical Society</rights><rights>2025 The Authors. Published by American Chemical Society.</rights><rights>2025 The Authors. Published by American Chemical Society 2025 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a289t-7f4b338656f86b7989565fb998c141ebbead7bf6e92fae5ee44d5cd0e145c1783</cites><orcidid>0000-0002-1957-0789 ; 0000-0002-8822-4089 ; 0000-0002-5241-5481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39839144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>M Santhosh, Neelakandan</creatorcontrib><creatorcontrib>Gupta, Suraj</creatorcontrib><creatorcontrib>Shvalya, Vasyl</creatorcontrib><creatorcontrib>Košiček, Martin</creatorcontrib><creatorcontrib>Zavašnik, Janez</creatorcontrib><creatorcontrib>Cvelbar, Uroš</creatorcontrib><title>Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.</description><subject>Catalysis and Kinetics</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkcFO3DAQhi1UBAv0FSDHXrLYiZ3YpwotFJAQoJaeLccZ75p6bWrHW_btCdoF0RMna-R_vhnNh9AJwVOCK3KqdJqChzhfmwwuTanGjPBqB00Iq3DJcCW-oAnmvC1xU9F9dJDSI8a4qTnbQ_u14LUglE7Qz7N-pby2fl7cPa_n4IuLVXB5sMEXMzUot042Ff_ssCjOs3Ll_UIlKG6t_gOu-JWdsf1YKh_SELMecoR0hHaNcgm-bt9D9PvHxcPsqry5u7yend2UquJiKFtDu7rmDWsMb7pWcMEaZjohuCaUQNeB6tvONCAqo4ABUNoz3WMglGnS8voQfd9wn3K3hF6DH6Jy8inapYprGZSV__94u5DzsJKEtJRTzkbCty0hhr8Z0iCXNmlwTnkIOcmaME4wGQ81RttNVMeQUgTzPodg-apEjkrkByVyq2TsPP645nvfm4MxUG8Cr4THkKMfr_Yp9gWun6EI</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>M Santhosh, Neelakandan</creator><creator>Gupta, Suraj</creator><creator>Shvalya, Vasyl</creator><creator>Košiček, Martin</creator><creator>Zavašnik, Janez</creator><creator>Cvelbar, Uroš</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1957-0789</orcidid><orcidid>https://orcid.org/0000-0002-8822-4089</orcidid><orcidid>https://orcid.org/0000-0002-5241-5481</orcidid></search><sort><creationdate>20250116</creationdate><title>Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures</title><author>M Santhosh, Neelakandan ; Gupta, Suraj ; Shvalya, Vasyl ; Košiček, Martin ; Zavašnik, Janez ; Cvelbar, Uroš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-7f4b338656f86b7989565fb998c141ebbead7bf6e92fae5ee44d5cd0e145c1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Catalysis and Kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M Santhosh, Neelakandan</creatorcontrib><creatorcontrib>Gupta, Suraj</creatorcontrib><creatorcontrib>Shvalya, Vasyl</creatorcontrib><creatorcontrib>Košiček, Martin</creatorcontrib><creatorcontrib>Zavašnik, Janez</creatorcontrib><creatorcontrib>Cvelbar, Uroš</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M Santhosh, Neelakandan</au><au>Gupta, Suraj</au><au>Shvalya, Vasyl</au><au>Košiček, Martin</au><au>Zavašnik, Janez</au><au>Cvelbar, Uroš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2025-01-16</date><risdate>2025</risdate><volume>39</volume><issue>2</issue><spage>1375</spage><epage>1383</epage><pages>1375-1383</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39839144</pmid><doi>10.1021/acs.energyfuels.4c05182</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1957-0789</orcidid><orcidid>https://orcid.org/0000-0002-8822-4089</orcidid><orcidid>https://orcid.org/0000-0002-5241-5481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2025-01, Vol.39 (2), p.1375-1383
issn 0887-0624
1520-5029
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11748485
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis and Kinetics
title Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Oxygen%20Evolution%20Catalysis%20with%20Dual-Phase%20Nickel%20Sulfide%20Nanostructures&rft.jtitle=Energy%20&%20fuels&rft.au=M%20Santhosh,%20Neelakandan&rft.date=2025-01-16&rft.volume=39&rft.issue=2&rft.spage=1375&rft.epage=1383&rft.pages=1375-1383&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.4c05182&rft_dat=%3Cproquest_pubme%3E3158101144%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-7f4b338656f86b7989565fb998c141ebbead7bf6e92fae5ee44d5cd0e145c1783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3158101144&rft_id=info:pmid/39839144&rfr_iscdi=true