Loading…
Three components in the light-induced current of the Limulus ventral photoreceptor
1. Light-induced currents were measured in Limulus ventral nerve photoreceptors using a two-electrode voltage clamp. Three kinetically distinct components in the light-induced current could be distinguished by varying the light adaptation state of the photoreceptor and the intensity of the stimulus...
Saved in:
Published in: | The Journal of physiology 1992-01, Vol.453 (1), p.69-96 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 1. Light-induced currents were measured in Limulus ventral nerve photoreceptors using a two-electrode voltage clamp. Three
kinetically distinct components in the light-induced current could be distinguished by varying the light adaptation state
of the photoreceptor and the intensity of the stimulus light. 2. The components could be partly separated by choosing appropriate
stimulus intensities and dark adaptation time. Thus the properties of the components could be separately studied. The first
component is the first to recover after a light adaptation, appears temporally first in the light-induced response, has the
lowest activation threshold and is the smallest. The second component needs a longer time to recover after an adapting illumination
and its kinetics differ from that of the other components. Applying a bright stimulus to a dark-adapted cell a third component
can be observed late in the response. 3. The time to peak of the first and the third components depended on the stimulus intensity,
but not on the dark adaptation time. The time to peak of the second component became shorter the longer the dark adaptation
time. For a constant adaptation state the time to the maximum of component 2 was independent, but those of components 1 and
3 were dependent on the membrane voltage. 4. To exclude the possibility of the contribution of voltage-gated currents, light-activated
currents were measured at clamp potentials more negative than -50 mV after adding 4-aminopyridine into the bath solution or
injecting tetraethyl-ammonium chloride into the cell. The properties of the three components remained unchanged under these
conditions. 5. The I-V curve of the first component was flat at negative membrane potentials and had a strong outward rectification
at positive membrane potentials. The I-V curve of component 3 showed a negative resistance at potentials more negative than
about -30 mV. In contrast, the I-V curve for the second component was always nearly linear. 6. No membrane potential was found
where the light-induced current was zero. Instead, current traces close to the reversal potential showed a complex waveform
indicating different reversal potentials for the three components. 7. The results indicate that the current components are
caused by three different populations of light-sensitive channels. The different activations, deactivations and recovery kinetics
of the components suggest that the three types of channels are activated by distinct intracellu |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1992.sp019219 |