Loading…
Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to en...
Saved in:
Published in: | Scientific reports 2025-01, Vol.15 (1), p.3419, Article 3419 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 3419 |
container_title | Scientific reports |
container_volume | 15 |
creator | Obořilová, Radka Kučerová, Eliška Botka, Tibor Vaisocherová-Lísalová, Hana Skládal, Petr Farka, Zdeněk |
description | Antibiotic-resistant strains of
Staphylococcus aureus
pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium
S. aureus
RN4220 Δ
tarM
, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain
S. aureus
RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention. |
doi_str_mv | 10.1038/s41598-024-85064-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160462063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</originalsourceid><addsrcrecordid>eNp9kU9vFCEYhydGY5vaL-DBkHjxMsr_YU7GNGpNmuhBzwSYd3bZsLACW3f99NJOrdWDXCDwvD9eeLruOcGvCWbqTeFEjKrHlPdKYMn7w6PulGIuesooffxgfdKdl7LBbQg6cjI-7U7YqAY8sPG023zx8DNBAFezd8j6VCCWlNEPX9do8qX4nak-RbRN0deUfVwhiMYGKKiuAZlowrH4gtKMrHEVsjcBhWNtaWYFsaK26a99PT7rnswmFDi_m8-6bx_ef7247K8-f_x08e6qd3Qgh55hoWYphBMgnRrZIEbJJVYWcztbMwk2KMwmap2gk-AzMdRYcEyJ2fGJzOyse7vk7vZ2C5NrPWQT9C77rclHnYzXf59Ev9ardK0JGQYqMW0Jr-4Scvq-h1L11hcHIZgIaV80IxJzSbFkDX35D7pJ-9z-ZKEoE4SpRtGFcjmVkmG-74ZgfaNTLzp106lvdepDK3rx8B33Jb_lNYAtQNndaIH85-7_xP4CCuGuRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160235138</pqid></control><display><type>article</type><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</creator><creatorcontrib>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</creatorcontrib><description>Antibiotic-resistant strains of
Staphylococcus aureus
pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium
S. aureus
RN4220 Δ
tarM
, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain
S. aureus
RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-85064-x</identifier><identifier>PMID: 39870739</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2204 ; 631/1647/2234 ; 631/1647/350/59 ; 631/326/1321 ; 631/326/432 ; Amoxicillin ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacteriophages ; Biofilms ; Biosensing Techniques - methods ; Biosensors ; Cell differentiation ; Drug resistance ; Humanities and Social Sciences ; Lysis ; Lysostaphin ; Lysostaphin - pharmacology ; Lytic agents ; Medical innovations ; multidisciplinary ; Phages ; Quartz crystal microbalance ; Quartz Crystal Microbalance Techniques ; Science ; Science (multidisciplinary) ; Staphylococcus aureus - drug effects ; Strains (organisms) ; Synergistic effect ; Turbidimetry</subject><ispartof>Scientific reports, 2025-01, Vol.15 (1), p.3419, Article 3419</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3160235138/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3160235138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39870739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Kučerová, Eliška</creatorcontrib><creatorcontrib>Botka, Tibor</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Antibiotic-resistant strains of
Staphylococcus aureus
pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium
S. aureus
RN4220 Δ
tarM
, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain
S. aureus
RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</description><subject>631/1647/2204</subject><subject>631/1647/2234</subject><subject>631/1647/350/59</subject><subject>631/326/1321</subject><subject>631/326/432</subject><subject>Amoxicillin</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteriophages</subject><subject>Biofilms</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cell differentiation</subject><subject>Drug resistance</subject><subject>Humanities and Social Sciences</subject><subject>Lysis</subject><subject>Lysostaphin</subject><subject>Lysostaphin - pharmacology</subject><subject>Lytic agents</subject><subject>Medical innovations</subject><subject>multidisciplinary</subject><subject>Phages</subject><subject>Quartz crystal microbalance</subject><subject>Quartz Crystal Microbalance Techniques</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Strains (organisms)</subject><subject>Synergistic effect</subject><subject>Turbidimetry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9vFCEYhydGY5vaL-DBkHjxMsr_YU7GNGpNmuhBzwSYd3bZsLACW3f99NJOrdWDXCDwvD9eeLruOcGvCWbqTeFEjKrHlPdKYMn7w6PulGIuesooffxgfdKdl7LBbQg6cjI-7U7YqAY8sPG023zx8DNBAFezd8j6VCCWlNEPX9do8qX4nak-RbRN0deUfVwhiMYGKKiuAZlowrH4gtKMrHEVsjcBhWNtaWYFsaK26a99PT7rnswmFDi_m8-6bx_ef7247K8-f_x08e6qd3Qgh55hoWYphBMgnRrZIEbJJVYWcztbMwk2KMwmap2gk-AzMdRYcEyJ2fGJzOyse7vk7vZ2C5NrPWQT9C77rclHnYzXf59Ev9ardK0JGQYqMW0Jr-4Scvq-h1L11hcHIZgIaV80IxJzSbFkDX35D7pJ-9z-ZKEoE4SpRtGFcjmVkmG-74ZgfaNTLzp106lvdepDK3rx8B33Jb_lNYAtQNndaIH85-7_xP4CCuGuRA</recordid><startdate>20250127</startdate><enddate>20250127</enddate><creator>Obořilová, Radka</creator><creator>Kučerová, Eliška</creator><creator>Botka, Tibor</creator><creator>Vaisocherová-Lísalová, Hana</creator><creator>Skládal, Petr</creator><creator>Farka, Zdeněk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20250127</creationdate><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><author>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/1647/2204</topic><topic>631/1647/2234</topic><topic>631/1647/350/59</topic><topic>631/326/1321</topic><topic>631/326/432</topic><topic>Amoxicillin</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteriophages</topic><topic>Biofilms</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cell differentiation</topic><topic>Drug resistance</topic><topic>Humanities and Social Sciences</topic><topic>Lysis</topic><topic>Lysostaphin</topic><topic>Lysostaphin - pharmacology</topic><topic>Lytic agents</topic><topic>Medical innovations</topic><topic>multidisciplinary</topic><topic>Phages</topic><topic>Quartz crystal microbalance</topic><topic>Quartz Crystal Microbalance Techniques</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Strains (organisms)</topic><topic>Synergistic effect</topic><topic>Turbidimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Kučerová, Eliška</creatorcontrib><creatorcontrib>Botka, Tibor</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obořilová, Radka</au><au>Kučerová, Eliška</au><au>Botka, Tibor</au><au>Vaisocherová-Lísalová, Hana</au><au>Skládal, Petr</au><au>Farka, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2025-01-27</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>3419</spage><pages>3419-</pages><artnum>3419</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Antibiotic-resistant strains of
Staphylococcus aureus
pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium
S. aureus
RN4220 Δ
tarM
, was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain
S. aureus
RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39870739</pmid><doi>10.1038/s41598-024-85064-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2025-01, Vol.15 (1), p.3419, Article 3419 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772602 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/1647/2204 631/1647/2234 631/1647/350/59 631/326/1321 631/326/432 Amoxicillin Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Bacteria Bacteriophages Biofilms Biosensing Techniques - methods Biosensors Cell differentiation Drug resistance Humanities and Social Sciences Lysis Lysostaphin Lysostaphin - pharmacology Lytic agents Medical innovations multidisciplinary Phages Quartz crystal microbalance Quartz Crystal Microbalance Techniques Science Science (multidisciplinary) Staphylococcus aureus - drug effects Strains (organisms) Synergistic effect Turbidimetry |
title | Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20biosensor%20with%20dissipation%20monitoring%20enables%20the%20analysis%20of%20bacterial%20lytic%20agent%20activity&rft.jtitle=Scientific%20reports&rft.au=Obo%C5%99ilov%C3%A1,%20Radka&rft.date=2025-01-27&rft.volume=15&rft.issue=1&rft.spage=3419&rft.pages=3419-&rft.artnum=3419&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-85064-x&rft_dat=%3Cproquest_pubme%3E3160462063%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3160235138&rft_id=info:pmid/39870739&rfr_iscdi=true |