Loading…

Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to en...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2025-01, Vol.15 (1), p.3419, Article 3419
Main Authors: Obořilová, Radka, Kučerová, Eliška, Botka, Tibor, Vaisocherová-Lísalová, Hana, Skládal, Petr, Farka, Zdeněk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3
container_end_page
container_issue 1
container_start_page 3419
container_title Scientific reports
container_volume 15
creator Obořilová, Radka
Kučerová, Eliška
Botka, Tibor
Vaisocherová-Lísalová, Hana
Skládal, Petr
Farka, Zdeněk
description Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 Δ tarM , was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.
doi_str_mv 10.1038/s41598-024-85064-x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160462063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</originalsourceid><addsrcrecordid>eNp9kU9vFCEYhydGY5vaL-DBkHjxMsr_YU7GNGpNmuhBzwSYd3bZsLACW3f99NJOrdWDXCDwvD9eeLruOcGvCWbqTeFEjKrHlPdKYMn7w6PulGIuesooffxgfdKdl7LBbQg6cjI-7U7YqAY8sPG023zx8DNBAFezd8j6VCCWlNEPX9do8qX4nak-RbRN0deUfVwhiMYGKKiuAZlowrH4gtKMrHEVsjcBhWNtaWYFsaK26a99PT7rnswmFDi_m8-6bx_ef7247K8-f_x08e6qd3Qgh55hoWYphBMgnRrZIEbJJVYWcztbMwk2KMwmap2gk-AzMdRYcEyJ2fGJzOyse7vk7vZ2C5NrPWQT9C77rclHnYzXf59Ev9ardK0JGQYqMW0Jr-4Scvq-h1L11hcHIZgIaV80IxJzSbFkDX35D7pJ-9z-ZKEoE4SpRtGFcjmVkmG-74ZgfaNTLzp106lvdepDK3rx8B33Jb_lNYAtQNndaIH85-7_xP4CCuGuRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160235138</pqid></control><display><type>article</type><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</creator><creatorcontrib>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</creatorcontrib><description>Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 Δ tarM , was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-85064-x</identifier><identifier>PMID: 39870739</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2204 ; 631/1647/2234 ; 631/1647/350/59 ; 631/326/1321 ; 631/326/432 ; Amoxicillin ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacteriophages ; Biofilms ; Biosensing Techniques - methods ; Biosensors ; Cell differentiation ; Drug resistance ; Humanities and Social Sciences ; Lysis ; Lysostaphin ; Lysostaphin - pharmacology ; Lytic agents ; Medical innovations ; multidisciplinary ; Phages ; Quartz crystal microbalance ; Quartz Crystal Microbalance Techniques ; Science ; Science (multidisciplinary) ; Staphylococcus aureus - drug effects ; Strains (organisms) ; Synergistic effect ; Turbidimetry</subject><ispartof>Scientific reports, 2025-01, Vol.15 (1), p.3419, Article 3419</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3160235138/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3160235138?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39870739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Kučerová, Eliška</creatorcontrib><creatorcontrib>Botka, Tibor</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 Δ tarM , was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</description><subject>631/1647/2204</subject><subject>631/1647/2234</subject><subject>631/1647/350/59</subject><subject>631/326/1321</subject><subject>631/326/432</subject><subject>Amoxicillin</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteriophages</subject><subject>Biofilms</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cell differentiation</subject><subject>Drug resistance</subject><subject>Humanities and Social Sciences</subject><subject>Lysis</subject><subject>Lysostaphin</subject><subject>Lysostaphin - pharmacology</subject><subject>Lytic agents</subject><subject>Medical innovations</subject><subject>multidisciplinary</subject><subject>Phages</subject><subject>Quartz crystal microbalance</subject><subject>Quartz Crystal Microbalance Techniques</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Strains (organisms)</subject><subject>Synergistic effect</subject><subject>Turbidimetry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9vFCEYhydGY5vaL-DBkHjxMsr_YU7GNGpNmuhBzwSYd3bZsLACW3f99NJOrdWDXCDwvD9eeLruOcGvCWbqTeFEjKrHlPdKYMn7w6PulGIuesooffxgfdKdl7LBbQg6cjI-7U7YqAY8sPG023zx8DNBAFezd8j6VCCWlNEPX9do8qX4nak-RbRN0deUfVwhiMYGKKiuAZlowrH4gtKMrHEVsjcBhWNtaWYFsaK26a99PT7rnswmFDi_m8-6bx_ef7247K8-f_x08e6qd3Qgh55hoWYphBMgnRrZIEbJJVYWcztbMwk2KMwmap2gk-AzMdRYcEyJ2fGJzOyse7vk7vZ2C5NrPWQT9C77rclHnYzXf59Ev9ardK0JGQYqMW0Jr-4Scvq-h1L11hcHIZgIaV80IxJzSbFkDX35D7pJ-9z-ZKEoE4SpRtGFcjmVkmG-74ZgfaNTLzp106lvdepDK3rx8B33Jb_lNYAtQNndaIH85-7_xP4CCuGuRA</recordid><startdate>20250127</startdate><enddate>20250127</enddate><creator>Obořilová, Radka</creator><creator>Kučerová, Eliška</creator><creator>Botka, Tibor</creator><creator>Vaisocherová-Lísalová, Hana</creator><creator>Skládal, Petr</creator><creator>Farka, Zdeněk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20250127</creationdate><title>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</title><author>Obořilová, Radka ; Kučerová, Eliška ; Botka, Tibor ; Vaisocherová-Lísalová, Hana ; Skládal, Petr ; Farka, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/1647/2204</topic><topic>631/1647/2234</topic><topic>631/1647/350/59</topic><topic>631/326/1321</topic><topic>631/326/432</topic><topic>Amoxicillin</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteriophages</topic><topic>Biofilms</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cell differentiation</topic><topic>Drug resistance</topic><topic>Humanities and Social Sciences</topic><topic>Lysis</topic><topic>Lysostaphin</topic><topic>Lysostaphin - pharmacology</topic><topic>Lytic agents</topic><topic>Medical innovations</topic><topic>multidisciplinary</topic><topic>Phages</topic><topic>Quartz crystal microbalance</topic><topic>Quartz Crystal Microbalance Techniques</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Strains (organisms)</topic><topic>Synergistic effect</topic><topic>Turbidimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Kučerová, Eliška</creatorcontrib><creatorcontrib>Botka, Tibor</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obořilová, Radka</au><au>Kučerová, Eliška</au><au>Botka, Tibor</au><au>Vaisocherová-Lísalová, Hana</au><au>Skládal, Petr</au><au>Farka, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2025-01-27</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>3419</spage><pages>3419-</pages><artnum>3419</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly. Here, we introduce a novel approach for real-time monitoring of pathogen lysis dynamics employing the piezoelectric quartz crystal microbalance (QCM) with dissipation (QCM-D) technique. The sensor, a QCM chip modified with the bacterium S. aureus RN4220 Δ tarM , was utilized to monitor the activity of the enzyme lysostaphin and the phage P68 as model lytic agents. Unlike conventional QCM solely measuring resonance frequency changes, our study demonstrates that dissipation monitoring enables differentiation of bacterial growth and lysis caused by cell-attached lytic agents. Compared to reference turbidimetry measurements, our results reveal distinct alterations in the growth curve of the bacteria adhered to the sensor, characterized by a delayed lag phase. Furthermore, the dissipation signal analysis facilitated the precise real-time monitoring of phage-mediated lysis. Finally, the QCM-D biosensor was employed to evaluate the synergistic effect of subinhibitory concentrations of the antibiotic amoxicillin with the bacteriophage P68, enabling monitoring of the lysis of P68-resistant wild-type strain S. aureus RN4220. Our findings suggest that this synergy also impedes the formation of bacterial aggregates, the precursors of biofilm formation. Overall, this method brings new insights into phage-antibiotic synergy, underpinning it as a promising strategy against antibiotic-resistant bacterial strains with broad implications for treatment and prevention.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39870739</pmid><doi>10.1038/s41598-024-85064-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2025-01, Vol.15 (1), p.3419, Article 3419
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11772602
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/2204
631/1647/2234
631/1647/350/59
631/326/1321
631/326/432
Amoxicillin
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteria
Bacteriophages
Biofilms
Biosensing Techniques - methods
Biosensors
Cell differentiation
Drug resistance
Humanities and Social Sciences
Lysis
Lysostaphin
Lysostaphin - pharmacology
Lytic agents
Medical innovations
multidisciplinary
Phages
Quartz crystal microbalance
Quartz Crystal Microbalance Techniques
Science
Science (multidisciplinary)
Staphylococcus aureus - drug effects
Strains (organisms)
Synergistic effect
Turbidimetry
title Piezoelectric biosensor with dissipation monitoring enables the analysis of bacterial lytic agent activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20biosensor%20with%20dissipation%20monitoring%20enables%20the%20analysis%20of%20bacterial%20lytic%20agent%20activity&rft.jtitle=Scientific%20reports&rft.au=Obo%C5%99ilov%C3%A1,%20Radka&rft.date=2025-01-27&rft.volume=15&rft.issue=1&rft.spage=3419&rft.pages=3419-&rft.artnum=3419&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-85064-x&rft_dat=%3Cproquest_pubme%3E3160462063%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c271x-3058f655c5e6c89375964608b04bfbad537803d2bc52d54f1a2abec385fc4d1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3160235138&rft_id=info:pmid/39870739&rfr_iscdi=true