Loading…
Translational regulation of SND1 governs endothelial homeostasis during stress
Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced plur...
Saved in:
Published in: | The Journal of clinical investigation 2025-02, Vol.135 (3), p.1-17 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1744-2f7d75f2632bed6b7c8231a91956a716893e91df416481a93db75a0ec8531dc43 |
container_end_page | 17 |
container_issue | 3 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 135 |
creator | Han, Zhenbo Yan, Gege Jousma, Jordan Nukala, Sarath Babu Amiri, Mehdi Kiniry, Stephen Tabatabaei, Negar Kwon, Youjeong Zhang, Sen Rehman, Jalees Pinho, Sandra Ong, Sang-Bing Baranov, Pavel V Tahmasebi, Soroush Ong, Sang-Ging |
description | Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell-derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain-containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity. |
doi_str_mv | 10.1172/JCI168730 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11785924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3162848858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1744-2f7d75f2632bed6b7c8231a91956a716893e91df416481a93db75a0ec8531dc43</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EoqWw4AdQJDawCMSv2FkhVN6qyoKytpzYaV2ldrETJP4el5aqsLI9Prpz5w4ApzC7gpCh65fhM8w5w9ke6ENKecoR5vs79x44CmGeZZAQSg5BDxe8oDnK-2A88dKGRrbGWdkkXk-79SNxdfI2voPJ1H1qb0OirXLtTDcmYjO30C60MpiQqM4bO01C63UIx-Cglk3QJ5tzAN4f7ifDp3T0-vg8vB2lFWSEpKhmitEa5RiVWuUlq6JLKAsYXUkWZymwLqCqCcwJj3WsSkZlpitOMVQVwQNws9ZdduVCq0rb1stGLL1ZSP8lnDTi7481MxEnETEvTgu0UrjYKHj30enQioUJlW4aabXrgsAwR5xwTnlEz_-hc9f5GNcPRQjmkBaRulxTlXcheF1v3cBs1RaJ7Zoie7Zrf0v-7gV_AwiQjSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3164438159</pqid></control><display><type>article</type><title>Translational regulation of SND1 governs endothelial homeostasis during stress</title><source>EZB Electronic Journals Library</source><creator>Han, Zhenbo ; Yan, Gege ; Jousma, Jordan ; Nukala, Sarath Babu ; Amiri, Mehdi ; Kiniry, Stephen ; Tabatabaei, Negar ; Kwon, Youjeong ; Zhang, Sen ; Rehman, Jalees ; Pinho, Sandra ; Ong, Sang-Bing ; Baranov, Pavel V ; Tahmasebi, Soroush ; Ong, Sang-Ging</creator><creatorcontrib>Han, Zhenbo ; Yan, Gege ; Jousma, Jordan ; Nukala, Sarath Babu ; Amiri, Mehdi ; Kiniry, Stephen ; Tabatabaei, Negar ; Kwon, Youjeong ; Zhang, Sen ; Rehman, Jalees ; Pinho, Sandra ; Ong, Sang-Bing ; Baranov, Pavel V ; Tahmasebi, Soroush ; Ong, Sang-Ging</creatorcontrib><description>Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell-derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain-containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI168730</identifier><identifier>PMID: 39895626</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Angiotensin-Converting Enzyme Inhibitors - pharmacology ; Cancer therapies ; Cardiovascular diseases ; Cardiovascular system ; Cell Cycle Proteins ; Cytotoxicity ; DNA damage ; DNA repair ; Drug dosages ; Endonucleases - genetics ; Endonucleases - metabolism ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Enzymes ; Gene expression ; Homeostasis ; Humans ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - genetics ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mortality ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Pluripotency ; Protein Biosynthesis - drug effects ; Proteins ; Proteomes ; Ribonucleic acid ; RNA ; Stem cells ; Stress, Physiological ; Sunitinib - pharmacology ; Toxicity ; Translation ; Tumors ; Tyrosine kinase inhibitors ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Wound healing</subject><ispartof>The Journal of clinical investigation, 2025-02, Vol.135 (3), p.1-17</ispartof><rights>Copyright American Society for Clinical Investigation Feb 2025</rights><rights>2025 Han et al. 2025 Han et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1744-2f7d75f2632bed6b7c8231a91956a716893e91df416481a93db75a0ec8531dc43</cites><orcidid>0000-0002-2787-9292 ; 0000-0002-5241-7364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39895626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Zhenbo</creatorcontrib><creatorcontrib>Yan, Gege</creatorcontrib><creatorcontrib>Jousma, Jordan</creatorcontrib><creatorcontrib>Nukala, Sarath Babu</creatorcontrib><creatorcontrib>Amiri, Mehdi</creatorcontrib><creatorcontrib>Kiniry, Stephen</creatorcontrib><creatorcontrib>Tabatabaei, Negar</creatorcontrib><creatorcontrib>Kwon, Youjeong</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Pinho, Sandra</creatorcontrib><creatorcontrib>Ong, Sang-Bing</creatorcontrib><creatorcontrib>Baranov, Pavel V</creatorcontrib><creatorcontrib>Tahmasebi, Soroush</creatorcontrib><creatorcontrib>Ong, Sang-Ging</creatorcontrib><title>Translational regulation of SND1 governs endothelial homeostasis during stress</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell-derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain-containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Angiotensin-Converting Enzyme Inhibitors - pharmacology</subject><subject>Cancer therapies</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular system</subject><subject>Cell Cycle Proteins</subject><subject>Cytotoxicity</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Drug dosages</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - genetics</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mortality</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pluripotency</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stem cells</subject><subject>Stress, Physiological</subject><subject>Sunitinib - pharmacology</subject><subject>Toxicity</subject><subject>Translation</subject><subject>Tumors</subject><subject>Tyrosine kinase inhibitors</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Wound healing</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkctOwzAQRS0EoqWw4AdQJDawCMSv2FkhVN6qyoKytpzYaV2ldrETJP4el5aqsLI9Prpz5w4ApzC7gpCh65fhM8w5w9ke6ENKecoR5vs79x44CmGeZZAQSg5BDxe8oDnK-2A88dKGRrbGWdkkXk-79SNxdfI2voPJ1H1qb0OirXLtTDcmYjO30C60MpiQqM4bO01C63UIx-Cglk3QJ5tzAN4f7ifDp3T0-vg8vB2lFWSEpKhmitEa5RiVWuUlq6JLKAsYXUkWZymwLqCqCcwJj3WsSkZlpitOMVQVwQNws9ZdduVCq0rb1stGLL1ZSP8lnDTi7481MxEnETEvTgu0UrjYKHj30enQioUJlW4aabXrgsAwR5xwTnlEz_-hc9f5GNcPRQjmkBaRulxTlXcheF1v3cBs1RaJ7Zoie7Zrf0v-7gV_AwiQjSI</recordid><startdate>20250203</startdate><enddate>20250203</enddate><creator>Han, Zhenbo</creator><creator>Yan, Gege</creator><creator>Jousma, Jordan</creator><creator>Nukala, Sarath Babu</creator><creator>Amiri, Mehdi</creator><creator>Kiniry, Stephen</creator><creator>Tabatabaei, Negar</creator><creator>Kwon, Youjeong</creator><creator>Zhang, Sen</creator><creator>Rehman, Jalees</creator><creator>Pinho, Sandra</creator><creator>Ong, Sang-Bing</creator><creator>Baranov, Pavel V</creator><creator>Tahmasebi, Soroush</creator><creator>Ong, Sang-Ging</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid><orcidid>https://orcid.org/0000-0002-5241-7364</orcidid></search><sort><creationdate>20250203</creationdate><title>Translational regulation of SND1 governs endothelial homeostasis during stress</title><author>Han, Zhenbo ; Yan, Gege ; Jousma, Jordan ; Nukala, Sarath Babu ; Amiri, Mehdi ; Kiniry, Stephen ; Tabatabaei, Negar ; Kwon, Youjeong ; Zhang, Sen ; Rehman, Jalees ; Pinho, Sandra ; Ong, Sang-Bing ; Baranov, Pavel V ; Tahmasebi, Soroush ; Ong, Sang-Ging</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1744-2f7d75f2632bed6b7c8231a91956a716893e91df416481a93db75a0ec8531dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Angiotensin-Converting Enzyme Inhibitors - pharmacology</topic><topic>Cancer therapies</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular system</topic><topic>Cell Cycle Proteins</topic><topic>Cytotoxicity</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Drug dosages</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - genetics</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mortality</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pluripotency</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stem cells</topic><topic>Stress, Physiological</topic><topic>Sunitinib - pharmacology</topic><topic>Toxicity</topic><topic>Translation</topic><topic>Tumors</topic><topic>Tyrosine kinase inhibitors</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Zhenbo</creatorcontrib><creatorcontrib>Yan, Gege</creatorcontrib><creatorcontrib>Jousma, Jordan</creatorcontrib><creatorcontrib>Nukala, Sarath Babu</creatorcontrib><creatorcontrib>Amiri, Mehdi</creatorcontrib><creatorcontrib>Kiniry, Stephen</creatorcontrib><creatorcontrib>Tabatabaei, Negar</creatorcontrib><creatorcontrib>Kwon, Youjeong</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Rehman, Jalees</creatorcontrib><creatorcontrib>Pinho, Sandra</creatorcontrib><creatorcontrib>Ong, Sang-Bing</creatorcontrib><creatorcontrib>Baranov, Pavel V</creatorcontrib><creatorcontrib>Tahmasebi, Soroush</creatorcontrib><creatorcontrib>Ong, Sang-Ging</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Homework Central</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Zhenbo</au><au>Yan, Gege</au><au>Jousma, Jordan</au><au>Nukala, Sarath Babu</au><au>Amiri, Mehdi</au><au>Kiniry, Stephen</au><au>Tabatabaei, Negar</au><au>Kwon, Youjeong</au><au>Zhang, Sen</au><au>Rehman, Jalees</au><au>Pinho, Sandra</au><au>Ong, Sang-Bing</au><au>Baranov, Pavel V</au><au>Tahmasebi, Soroush</au><au>Ong, Sang-Ging</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational regulation of SND1 governs endothelial homeostasis during stress</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2025-02-03</date><risdate>2025</risdate><volume>135</volume><issue>3</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell-derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain-containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>39895626</pmid><doi>10.1172/JCI168730</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2787-9292</orcidid><orcidid>https://orcid.org/0000-0002-5241-7364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2025-02, Vol.135 (3), p.1-17 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11785924 |
source | EZB Electronic Journals Library |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Angiotensin-Converting Enzyme Inhibitors - pharmacology Cancer therapies Cardiovascular diseases Cardiovascular system Cell Cycle Proteins Cytotoxicity DNA damage DNA repair Drug dosages Endonucleases - genetics Endonucleases - metabolism Endothelial cells Endothelial Cells - drug effects Endothelial Cells - metabolism Endothelial Cells - pathology Enzymes Gene expression Homeostasis Humans Kinases Mechanistic Target of Rapamycin Complex 1 - genetics Mechanistic Target of Rapamycin Complex 1 - metabolism Mortality Nuclear Proteins - genetics Nuclear Proteins - metabolism Pluripotency Protein Biosynthesis - drug effects Proteins Proteomes Ribonucleic acid RNA Stem cells Stress, Physiological Sunitinib - pharmacology Toxicity Translation Tumors Tyrosine kinase inhibitors Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Wound healing |
title | Translational regulation of SND1 governs endothelial homeostasis during stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20regulation%20of%20SND1%20governs%20endothelial%20homeostasis%20during%20stress&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Han,%20Zhenbo&rft.date=2025-02-03&rft.volume=135&rft.issue=3&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI168730&rft_dat=%3Cproquest_pubme%3E3162848858%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1744-2f7d75f2632bed6b7c8231a91956a716893e91df416481a93db75a0ec8531dc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3164438159&rft_id=info:pmid/39895626&rfr_iscdi=true |