Loading…

Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas

Both phototactic and photophobic responses of Chlamydomonas are mediated by a visual system comprising a rhodopsin photoreceptor. Suction pipette recordings have revealed that flash stimulation causes calcium currents into the eyespot and the flagella. These photocurrents have been suggested to be t...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1997-09, Vol.73 (3), p.1395-1401
Main Authors: Holland, E.M., Harz, H., Uhl, R., Hegemann, P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Both phototactic and photophobic responses of Chlamydomonas are mediated by a visual system comprising a rhodopsin photoreceptor. Suction pipette recordings have revealed that flash stimulation causes calcium currents into the eyespot and the flagella. These photocurrents have been suggested to be the trigger for all behavioral light responses of the cell. But this has never been shown experimentally. Here we describe a detection technique that combines electrical and optical measurements from individual algae held in a suction pipette. Thus it is possible to record photocurrents and flagellar beating simultaneously and establish a direct link between the two. We demonstrate that in Chlamydomonas only the photoreceptor current in conjuction with a fast flagellar current constitutes the trigger for photophobic responses. Within the time of the action-potential-like flagellar current, the flagella switch from forward to backward swimming, which constitutes the beginning of the photoshock reaction. The switch is accompanied by a complex frequency change and beating pattern modulation. The results are interpreted in terms of a general model for phototransduction in green algae (Chlorophyceae).
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(97)78171-2